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QUANTUM INFORMATION PROCESSING , SCIENCE OF - The theoretical, experimental and
technological areas covering the use of quantum mechanics for communication and computa-
tion.

Kluwer Encyclopedia of Mathematics, Supplement III

Research of the last few decades has established that quantum information, or information based on
quantum mechanics, has capabilities that exceed those of traditional “classical” information. For exam-
ple, in communication, quantum information enables quantum cryptography [1, 2], which is a method
for communicating in secret. Secrecy is guaranteed because eavesdropping attempts necessarily disturb
the exchanged quantum information without revealing the content of the communication. In computation,
quantum information enables efficient simulation of quantum physics [3], a task for which general pur-
pose, efficient, classical algorithms are not known to exist. Quantum information also leads to efficient
algorithms for factoring of large numbers [4, 5], which is believed to be difficult for classical computers.
An efficient factoring algorithm would break the security of commonly used public key cryptographic
codes used for authenticating and securing internet communications. A fourth application of quantum
information improves the efficiency with which unstructured search problems can be solved [6]. Quantum
unstructured search may make it possible to solve significantly larger instances of optimization problems
such as the scheduling and traveling salesman problems.

As a result of the capabilities of quantum information, the science of quantum information processing
is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations
of the underlying theory, on developing new applications of quantum information and on physically real-
izing controllable quantum devices. The purpose of this primer is to provide an elementary introduction
to quantum information processing (Sect.2), and then to briefly explain how we hope to exploit the ad-
vantages of quantum information (Sect.3). These two sections can be read independently. For reference,
we have included a glossary (Sect.4) of the main terms of quantum information.

When we use the word “information”, we generally think of the things we can talk about, broadcast,
write down, or otherwise record. Such records can exist in many forms, such as sound waves, electrical
signals in a telephone wire, characters on paper, pit patterns on an optical disk, or magnetization on a
computer hard disk. A crucial property of information is that it is “fungible”: It can be represented in many
different physical forms and easily converted from one form to another without changing its meaning. In
this sense information exists independently of the devices used to represent it, but requires at least one
physical representation to be useful.

We call the familiar information stored in today’s computers “classical” or “deterministic” to distin-
guish it from quantum information. It is no accident that classical information is the basis of all human
knowledge. Any information passing through our senses is best modeled by classical discrete or con-
tinuous information. Therefore, when considering any other kind of information, we need to provide a
method for extracting classically meaningful information. We begin by recalling the basic ideas of clas-
sical information in a way that illustrates the general procedure for building an information processing
theory.
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1 Classical Information

The basic unit of classical deterministic information is the “bit”. A bit is an abstract entity or “system”
that can be in one of the two states symbolized by0 and1. At this point, the symbols for the two states
have no numeric meaning. That is why we have used a font different from that for the numbers0 and1.
By making a clear distinction between the bit and its states we emphasize that a bit should be physically
realized as a system or device whose states correspond to the ideal bit’s states. For example, if you are
reading this primer on paper, the system used to realize a bit is a reserved location on the surface, and the
state depends on the pattern of ink (0 or 1) in that location. In a computer, the device realizing a bit can be
a combination of transistors and other integrated circuit elements with the state of the bit determined by
the distribution of charge.

In order to make use of information it must be possible to manipulate (or “process”) the states of
information units. The elementary operations that can be used for this purpose are called “gates”. Two
one-bit gates are thenot and thereset gates. Applying thenot gate to a bit has the effect of “flipping”
the state of the bit. For example, if the initial state of the bit is0, then the state after applyingnot is
not(0) = 1. We can present the effect of the gate in the following form:

Initial State Final State
0 → not(0) = 1,
1 → not(1) = 0.

(1)

Thereset gate sets the state to0 regardless of the input:

Initial State Final State
0 → reset(0) = 0,
1 → reset(1) = 0.

(2)

By applying a combination ofnot andreset gates one can transform the state of a bit in every possible
way.

Information units can be combined to represent more information. Bits are typically combined into
sequences. The states of such a sequence are symbolized by strings of state symbols for the constituent
bits. For example a two-bit sequence can be in one of the following four states:00, 01, 10 and11. The
different bits are distinguished by their position in the sequence.

The one-bit gates can be applied to any bit in a sequence. For example, thenot gate applied to the
second bit of a three-bit sequence in the state011 changes the state to001.

One-bit gates act independently on each bit. To compute with multiple bits, we need gates whose
action can correlate the states of two or more bits. One such gate is thenand (“not and”) gate, which acts
on two bits in a bit sequence. Its effect is to set the state of the first bit to0 if both the first and the second
bit are1, otherwise it sets it to1. Here is what happens whennand is applied to two consecutive bits:

Initial State Final State
00 → nand(00) = 10,
01 → nand(01) = 11,
10 → nand(10) = 10,
11 → nand(11) = 01.

(3)
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Thenand gate can be applied to any two bits in a sequence. For example, it can be applied to the fourth
and second bits (in this order) of four bits, in which case the initial state1101 is transformed to1100,
setting the fourth bit to0.

Other operations on bit sequences include adding a new bit to the beginning (prepend) or end
(append) of a bit sequence. The new bit is always initialized to0. It is also possible to discard the
first or last bit, regardless of its state. Versions of these operations that are conditional on the state of
another bit may also be used. An example is the conditional append operation: “if thek’th bit is in the
state0 then append a bit.”

The gates just introduced suffice for implementing arbitrary state transformations of a given bit se-
quence. Instructions for applying gates in a particular order are called a “circuit”. An important part of
investigations in information processing is to determine the minimum resources required to perform infor-
mation processing tasks. For a given circuit, the two primary resources are the number of gates and the
total number of bits used. The “circuit complexity” of a desired transformation is the minimum number of
gates needed to implement it.

The model of computation defined by the ability to apply gates in a fixed sequence is called the “circuit
model”. Classical computation extends the circuit model by providing a means for repeating blocks of
instructions indefinitely or until a desired condition is achieved. In principle, it is possible to conceive
of a general purpose computer as a device that repeatedly applies the same circuit to the beginnings of
several bit sequences. In this introduction, we take for granted a traditional programmable computer
based on classical information. Thus a “quantum algorithm” is a program written for such a computer
with additional instructions for applying gates to quantum information. The computational power of this
model is equivalent to that of other general purpose models of quantum computation, such as quantum
Turing machines [7].

For an introduction to algorithms and their analysis, see [8]. A useful textbook on computational
complexity with an introduction to classical computation and computational machine models is [9].

2 Quantum Information

The foundations of an information processing theory can be constructed by the procedure we followed in
the previous section:

1. Define the basic unit of information.

2. Give the means for processing one unit.

3. Describe how multiple units can be combined.

4. Give the means for processing multiple units.

5. Show how to convert the content of any of the extant units to classical information.

Note that the last step was not required for classical information processing.
In this section, we follow the general procedure for defining an information processing theory to in-

troduce quantum information processing. A simple example that exhibits the advantages of quantum
information is given in Sect.2.8. A version of the quantum factoring algorithm is described in Sect.2.10.
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2.1 The Quantum Bit

The fundamental resource and basic unit of quantum information is the quantum bit (qubit), which behaves
like a classical bit enhanced by the superposition principle (see below). From a physical point of view,
a qubit is represented by an ideal two-state quantum system. Examples of such systems include photons
(vertical and horizontal polarization), electrons and other spin-1

2
systems (spin up and down), and systems

defined by two energy levels of atoms or ions. From the beginning the two-state system played a central
role in studies of quantum mechanics. It is the most simple quantum system, and in principle all other
quantum systems can be modeled in the state space of collections of qubits.

From the information processing point of view, a qubit’s state space contains the two “logical”, or
“computational”, states|||0〉〉〉 and |||1〉〉〉. The so-called “ket” notation for these states was introduced by
P. Dirac, and its variations are widely used in quantum physics. One can think of the pair of symbols
“ |||” and “〉〉〉” as representing the qubit system. Their content specifies a state for the system. In this context
0 and1 are system-independent state labels. When, say,0 is placed within the ket, the resulting expression
|||0〉〉〉 represents the corresponding state of a specific qubit.

The initial state of a qubit is always one of the logical states. Using operations to be introduced later,
we can obtain states which are “superpositions” of the logical states. Superpositions can be expressed
as sumsα|||0〉〉〉 + β|||1〉〉〉 over the logical states with complex coefficients. The complex numbersα andβ
are called the “amplitudes” of the superposition. The existence of such superpositions of distinguishable
states of quantum systems is one of the basic tenets of quantum theory called the “superposition principle”.
Another way of writing a general superposition is as a vector

α|||0〉〉〉+ β|||1〉〉〉 ↔
(
α
β

)
, (4)

where the two-sided arrow “↔” is used to denote the correspondence between expressions that mean the
same thing.

The qubit states that are superpositions of the logical states are called “pure” states: A superposition
α|||0〉〉〉 + β|||1〉〉〉 is a pure state if the corresponding vector has length1, that is |α|2 + |β|2 = 1. Such a
superposition or vector is said to be “normalized”. (For a complex number given byγ = x + iy, one can
evaluate|γ|2 = x2 + y2. Here,x andy are the real and imaginary part ofγ, and the symboli is a square
root of−1, that is,i2 = −1. The conjugate ofγ is γ = x− iy. Thus|γ|2 = γγ.) Here are a few examples
of states given in both the ket and the vector notation:

|||ψ1〉〉〉 =
(
|||0〉〉〉+ |||1〉〉〉

)
/
√

2↔
(

1/
√

2

1/
√

2

)
, (5)

|||ψ2〉〉〉 =
3

5
|||0〉〉〉 − 4

5
|||1〉〉〉 ↔

(
3/5
−4/5

)
, (6)

|||ψ3〉〉〉 =
i3

5
|||0〉〉〉 − i4

5
|||1〉〉〉 ↔

(
i3/5
−i4/5

)
. (7)

The state|||ψ3〉〉〉 is obtained from|||ψ2〉〉〉 by multiplication with i. It turns out that two states cannot be
distinguished if one of them is obtained by multiplying the other by a “phase”eiθ. Note how we have
generalized the ket notation by introducing expressions such as|||ψ〉〉〉 for arbitrary states.
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The superposition principle for quantum information means that we can have states that are sums of
logical states with complex coefficients. There is another, more familiar type of information whose states
are combinations of logical states. The basic unit of this type of information is the probabilistic bit (pbit).
Intuitively, a pbit can be thought of as representing the as-yet-undetermined outcome of a coin flip. Since
we need the idea of probability to understand how quantum information converts to classical information,
we briefly introduce pbits.

A pbit’s state space is a probability distribution over the states of a bit. One very explicit way to
symbolize such a state is by using the expression{p:0, (1−p):1}, which means that the pbit has probability
p of being0 and1 − p of being1. Thus a state of a pbit is a “probabilistic” combination of the two
logical states, where the coefficients are nonnegative real numbers summing to1. A typical example is the
unbiased coin in the process of being flipped. If “tail” and “head” represent0 and1, respectively, the coin’s
state is{1

2
:0, 1

2
:1}. After the outcome of the flip is known, the state “collapses” to one of the logical states

0 and1. In this way, a pbit is converted to a classical bit. If the pbit is probabilistically correlated with
other pbits, the collapse associated with learning the pbit’s logical state changes the overall probability
distribution by a process called “conditioning on the outcome”.

A consequence of the conditioning process is that we never actually “see” a probability distribution.
We only see classical deterministic bit states. According to the frequency interpretation of probabilities,
the original probability distribution can only be inferred after one looks at many independent pbits in the
same state{p:0, (1 − p):1}: In the limit of infinitely many pbits,p is given by the fraction of pbits seen
to be in the state0. As we will explain, we can never “see” a general qubit state either. For qubits there
is a process analogous to conditioning. This process is called “measurement” and converts qubit states to
classical information.

Information processing with pbits has many advantages over deterministic information processing with
bits. One advantage is that algorithms are often much easier to design and analyze if they are probabilistic.
Examples include many optimization and physics simulation algorithms. In some cases, the best avail-
able probabilistic algorithm is more efficient than any known deterministic algorithm. An example is an
algorithm for determining whether a number is prime or not. It is not known whether every probabilistic
algorithm can be “derandomized” efficiently. There are important communication problems that can be
solved probabilistically but not deterministically. For a survey, see [10].

What is the difference between bits, pbits and qubits? One way to visualize the difference and see the
enrichment provided by pbits and qubits is shown in Fig.1.
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Bit
0

1

Pbit
0

1

Qubit
0

1

States: 0 or 1 {p:0, (1− p):1} α|||0〉〉〉+ β|||1〉〉〉
|α|2 + |β|2 = 1

FIG. 1: Visual comparison of the state spaces of different information units. The states of a bit correspond
to two points. The states of a pbit can be thought of as “convex” combinations of the states of a bit
and therefore can be visualized as lying on the line connecting the two bit states. A qubit’s pure states
correspond to the surface of the unit sphere in three dimensions, where the logical states correspond to
the poles. This representation of qubit states is called the “Bloch sphere”. The explicit correspondence
is discussed at the end of Sect.2.7. See also the definition and use of the Bloch sphere in [11]. The
correspondence between the pure states and the sphere is physically motivated and comes from a way of
viewing a spin-1

2
system as a small quantum magnet. Intuitively, a state is determined by the direction of

the north pole of the magnet.

2.2 Processing One Qubit

The quantum version of thenot gate for bits exchanges the two logical states. That is, using ket notation,

not
(
α|||0〉〉〉+ β|||1〉〉〉

)
= α|||1〉〉〉+ β|||0〉〉〉 = β|||0〉〉〉+ α|||1〉〉〉. (8)

In vector notation this equation becomes

not

(
α
β

)
=

(
β
α

)
. (9)

Another way of expressing the effect ofnot is by multiplying the vector by a matrix representingnot:

not

(
α
β

)
=

(
0 1
1 0

) (
α
β

)
=

(
β
α

)
, (10)

so we that can identify the action ofnot with the matrixσx =

(
0 1
1 0

)
. An even simpler gate is the one

that does nothing. We call this thenoop gate, and its matrix form is the identity matrix as shown in the
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following equation:

noop

(
α
β

)
=

(
1 0
0 1

) (
α
β

)
=

(
α
β

)
. (11)

Thenoop andnot gates are “reversible”. In other words, we can undo their actions by applying other
gates. For example, the action of thenot gate can be undone by anothernot gate. The action of every
reversible quantum gate can be represented by matrix multiplication, where the matrix has the additional
property of preserving the length of vectors. Such matrices are called “unitary” and are characterized by
the equationA†A = 1l, whereA† is the conjugate transpose ofA and1l is the identity matrix. (The conju-
gate transpose of a matrix is computed by flipping the matrix across the main diagonal and conjugating the
complex numbers.) For gates represented by a matrix, the unitarity condition is necessary and sufficient
for ensuring that pure states get mapped to pure states.

Because qubit states can be represented as points on a sphere, reversible one-qubit gates can be thought
of as rotations of the Bloch sphere. This is why such quantum gates are often called “rotations”. As
explained in detail in [11], rotations around thex, y andz axis are in a sense generated by the three Pauli
matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (12)

each of which represents a one-qubit gate. For example, a rotation around thex-axis by an angleφ is
given bye−iσxφ/2 = cos(φ/2)1l − i sin(φ/2)σx. To obtain this identity, one can use the power series for
eA, eA =

∑∞
k=0

1
k!
Ak, and exploit the fact thatσ2

x = 1l to simplify the expression. Here are some gates that
can be defined with the help of rotations:

90◦ x-rotation: rotx90◦ = 1√
2

(
1 −i
−i 1

)

90◦ y-rotation: roty90◦ = 1√
2

(
1 −1
1 1

)

φ z-rotation: rotzφ =

(
e−iφ/2 0

0 eiφ/2

)

Hadamard gate: H = 1√
2

(
1 1
1 −1

)
(13)

The rotation gates often show up in controlling spins or ions with radio-frequency pulses or lasers. The
Hadamard gate is used primarily by quantum programmers. It can be expressed as a product of a90◦

y-rotation andσz.
To check directly that the rotation gates are reversible one can determine their inverses. In this case

and as expected, the inverse of a rotation is the rotation around the same axis in the opposite direction. For
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example, the inverses of theroty90◦ androtzφ gates are given by

roty−90◦ = 1√
2

(
1 1
−1 1

)

rotz−φ =

(
eiφ/2 0

0 e−iφ/2

) (14)

Another useful property of the rotation gates is that the angles add when rotations are applied around the
same axis. For example,rotzφrotzθ = rotzφ+θ.

The ket notation can be extended so that we can write gates in a compact form that readily generalizes
to multiple qubits. To do so we have to introduce expressions such as〈〈〈ψ||| = α〈〈〈0|||+β〈〈〈1|||. This is called the
“bra” notation. The terminology comes from the term “bracket”: The ‘bra” is the left and the “ket” is the
right part of a matched pair of brackets. From the vector point of view,〈〈〈ψ||| corresponds to the row vector
(α, β). Note that a column vector multiplied by a row vector yields a matrix. In the bra-ket notation, this
corresponds to multiplying a ket|||ψ〉〉〉 by a bra〈〈〈φ|||, written as|||ψ〉〉〉〈〈〈φ|||. Since this represents an operator on
states, we expect to be able to compute the effect of|||ψ〉〉〉〈〈〈φ||| on a state|||ϕ〉〉〉 by forming the product. To be
able to evaluate such products with one-qubit kets and bras, we need the following two rules.

Distributivity. You can rewrite sums and products using distributivity. For example,(3

5
〈〈〈0|||+ 4

5
〈〈〈1|||

)
i|||1〉〉〉 =

i3

5
〈〈〈0||||||1〉〉〉+ i4

5
〈〈〈1||||||1〉〉〉. (15)

Observe that we can combine the amplitudes of terms, but we cannot rearrange the order of the bras
and kets in a product.

Inner product evaluation. The product of a logical “bra” and a logical “ket” is evaluated according
to the identities

〈〈〈0||||||0〉〉〉 = 1,

〈〈〈0||||||1〉〉〉 = 0,

〈〈〈1||||||0〉〉〉 = 0,

〈〈〈1||||||1〉〉〉 = 1. (16)

It follows that for logical states, if a bra multiplies a ket, the result cancels unless the states match,
in which case the answer is1. Applying inner product evaluation to the example (Eq.15) results in

i3

5
〈〈〈0||||||1〉〉〉+ i4

5
〈〈〈1||||||1〉〉〉 =

i3

5
0 +

i4

5
1 =

i4

5
. (17)

To simplify the notation, we can omit one of the two vertical bars in products such as〈〈〈a||||||b〉〉〉 and write
〈〈〈a|||b〉〉〉.

To understand inner product evaluation, think of the expressions as products of row and column vec-
tors. For example,

〈〈〈0|||1〉〉〉 ↔ ( 1 0 )
(

0
1

)
= 0, (18)
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That is, as vectors the two states|||0〉〉〉 and |||1〉〉〉 are orthogonal. In general, if|||φ〉〉〉 and |||ψ〉〉〉 are states, then
〈〈〈φ|||ψ〉〉〉 is the “inner product” or “overlap” of the two states. In the expression for the overlap,〈〈〈φ||| is
computed from|||φ〉〉〉 = α|||0〉〉〉+ β|||1〉〉〉 by conjugating the coefficients and converting the logical kets to bras:
〈〈〈φ||| = α〈〈〈0||| + β〈〈〈1|||. In the vector representation, this is the conjugate transpose of the column vector for
|||φ〉〉〉, so the inner product agrees with the usual one. Two states are orthogonal if their overlap is zero. We
write |||φ〉〉〉† = 〈〈〈φ||| and〈〈〈φ|||† = |||φ〉〉〉.

Every linear operator on states can be expressed with the bra-ket notation. For example, the bra-ket
expression for thenoop gate isnoop = |||0〉〉〉〈〈〈0|||+ |||1〉〉〉〈〈〈1|||. To applynoop to a qubit, you multiply its state
on the left by the bra-ket expression:

noop
(
α|||0〉〉〉+ β|||1〉〉〉

)
=

(
|||0〉〉〉〈〈〈0|||+ |||1〉〉〉〈〈〈1|||

)(
α|||0〉〉〉+ β|||1〉〉〉

)
= |||0〉〉〉〈〈〈0|||

(
α|||0〉〉〉+ β|||1〉〉〉

)
+ |||1〉〉〉〈〈〈1|||

(
α|||0〉〉〉+ β|||1〉〉〉

)
= α|||0〉〉〉〈〈〈0|||0〉〉〉+ β|||0〉〉〉〈〈〈0|||1〉〉〉+ α|||1〉〉〉〈〈〈1|||0〉〉〉+ β|||1〉〉〉〈〈〈1|||1〉〉〉
= α|||0〉〉〉1 + β|||0〉〉〉0 + α|||1〉〉〉0 + β|||1〉〉〉1
= α|||0〉〉〉+ β|||1〉〉〉 (19)

One way to think about an operator such as|||a〉〉〉〈〈〈b||| is to notice that when it is used to operate on a ket
expression, the〈〈〈b||| picks out the matching kets in the state, which are then changed to|||a〉〉〉. For example,
we can write thenot operation asnot = |||0〉〉〉〈〈〈1|||+ |||1〉〉〉〈〈〈0|||.

The coefficients of the|||a〉〉〉〈〈〈b||| in a bra-ket representation of a gate correspond to matrix entries in the
matrix representation. The relationship is defined by

α00|||0〉〉〉〈〈〈0|||+ α01|||0〉〉〉〈〈〈1|||+ α10|||1〉〉〉〈〈〈0|||+ α11|||1〉〉〉〈〈〈1||| ↔
(
α00 α01

α10 α11

)
. (20)

2.3 Two Quantum Bits

Some states of two quantum bits can be symbolized by the juxtaposition (or multiplication) of states of
each quantum bit. In particular, the four logical states|||0〉〉〉|||0〉〉〉, |||0〉〉〉|||1〉〉〉, |||1〉〉〉|||0〉〉〉, and |||1〉〉〉|||1〉〉〉 are acceptable
pure states for two quantum bits. In these expressions, we have distinguished the qubits by position (first
or second). It is easier to manipulate state expressions if we explicitly name the qubits, sayA andB. We
can then distinguish the kets by writing, for example,|||ψ〉〉〉

A
for a state of qubitA. Now the state|||0〉〉〉|||1〉〉〉 can

be written with explicit qubit names (or “labels”) as

|||0〉〉〉
A
|||1〉〉〉

B
= |||1〉〉〉

B
|||0〉〉〉

A
= |||01〉〉〉

AB
= |||10〉〉〉

BA
. (21)

Having explicit labels allows us to unambiguously reorder the states in a product of states belonging to
different qubits. We say that kets for different qubits “commute”.

So far we have seen four states of two qubits, which are the logical states that correspond to the states
of two bits. As in the case of one qubit, the superposition principle can be used to get all the other pure
states. Each state of two qubits is therefore of the form

α|||00〉〉〉
AB

+ β|||01〉〉〉
AB

+ γ|||10〉〉〉
AB

+ δ|||11〉〉〉
AB
, (22)
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whereα, β, γ, andδ are complex numbers. Again, there is a column vector form for the state:
α
β
γ
δ

 , (23)

and this vector has to be of unit length, that is|α|2 + |β|2 + |γ|2 + |δ|2 = 1. When using the vector form
for qubit states, one has to be careful about the convention used for ordering the coefficients.

Other examples of two-qubit states in ket notation are the following:

|||ψ1〉〉〉
AB

=
1√
2

(
|||0〉〉〉

A
+ |||1〉〉〉

A

)
|||1〉〉〉

B
,

|||ψ2〉〉〉
AB

=
1√
2

(
|||0〉〉〉

A
− |||1〉〉〉

A

) 1√
2

(
|||0〉〉〉

B
+ i|||1〉〉〉

B

)
=

1

2

(
|||00〉〉〉

AB
+ i|||01〉〉〉

AB
− |||10〉〉〉

AB
− i|||11〉〉〉

AB

)
|||ψ3〉〉〉

AB
=

1√
2

(
|||00〉〉〉

AB
+ |||11〉〉〉

AB

)
,

|||ψ4〉〉〉
AB

=
1√
2

(
|||01〉〉〉

AB
− |||10〉〉〉

AB

)
. (24)

The first two of these states have the special property that they can be written as a product|||φ1〉〉〉
A
|||φ2〉〉〉

B

of a state of qubitA and a state of qubitB. The second expression for|||ψ2〉〉〉 shows that the product
decomposition is not always easy to see. Such states are called “product” states. The last two states,|||ψ3〉〉〉

AB

and|||ψ4〉〉〉
AB

are two of the famous Bell states. They have no such representation as a product of independent
states of each qubit. They are said to be “entangled” because they contain a uniquely quantum correlation
between the two qubits. Pbits can also have correlations that cannot be decomposed into product states,
but the entangled states have additional properties that make them very useful. For example, ifAlice and
Bob each have one of the qubits that together are in the state|||ψ3〉〉〉

AB
, they can use them to create a secret

bit for encrypting their digital communications.

2.4 Processing Two Qubits

The simplest way of modifying the state of two qubits is to apply one of the one-qubit gates. If the gates
are expressed in the bra-ket notation, all we need to do is add qubit labels so that we know which qubit
each bra or ket belongs to. For example, thenot gate for qubitB is written as

not(B) = |||0〉〉〉
B

B〈〈〈1|||+ |||1〉〉〉
B

B〈〈〈0|||. (25)

The labels for bra expressions occur as left superscripts. To apply expressions like this to states, we need
one more rule:
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Commutation. Kets and bras with different labels can be interchanged in products (they “com-
mute”). This is demonstrated by the following example:(

|||0〉〉〉
B

B〈〈〈1|||
)
|||01〉〉〉

AB
= |||0〉〉〉

B

B〈〈〈1||||||0〉〉〉
A
|||1〉〉〉

B

= |||0〉〉〉
A
|||0〉〉〉

B

B〈〈〈1||| |||1〉〉〉
B

= |||0〉〉〉
A
|||0〉〉〉

B

B〈〈〈1|||1〉〉〉
B

= |||0〉〉〉
A
|||0〉〉〉

B
= |||00〉〉〉

AB
. (26)

Note that we cannot merge the two vertical bars in expressions such asB〈〈〈1||||||0〉〉〉
A

because the two terms
belong to different qubits. The bars can only be merged when the expression is an inner product, which
requires that the two terms belong to the same qubit.

With the rules for bra-ket expressions in hand, we can apply thenot gate to one of our Bell states to
see how it acts:

not(B) 1√
2

(
|||00〉〉〉

AB
+ |||11〉〉〉

AB

)
=

(
|||0〉〉〉

B

B〈〈〈1|||+ |||1〉〉〉
B

B〈〈〈0|||
) 1√

2

(
|||00〉〉〉

AB
+ |||11〉〉〉

AB

)
=

1√
2

(
|||0〉〉〉

B

B〈〈〈1|||
(
|||00〉〉〉

AB
+ |||11〉〉〉

AB

)
+ |||1〉〉〉

B

B〈〈〈0|||
(
|||00〉〉〉

AB
+ |||11〉〉〉

AB

))
=

1√
2

(
|||0〉〉〉

B

B〈〈〈1||||||00〉〉〉
AB

+ |||0〉〉〉
B

B〈〈〈1||||||11〉〉〉
AB

+ |||1〉〉〉
B

B〈〈〈0||||||00〉〉〉
AB

+ |||1〉〉〉
B

B〈〈〈0||||||11〉〉〉
AB

)
=

1√
2

(
|||0〉〉〉

A
|||0〉〉〉

B

B〈〈〈1||||||0〉〉〉
B

+ |||1〉〉〉
A
|||0〉〉〉

B

B〈〈〈1||||||1〉〉〉
B

+ |||0〉〉〉
A
|||1〉〉〉

B

B〈〈〈0||||||0〉〉〉
B

+ |||1〉〉〉
A
|||1〉〉〉

B

B〈〈〈0||||||1〉〉〉
B

)
=

1√
2

(
|||0〉〉〉

A
|||0〉〉〉

B
0 + |||1〉〉〉

A
|||0〉〉〉

B
1 + |||0〉〉〉

A
|||1〉〉〉

B
1 + |||1〉〉〉

A
|||1〉〉〉

B
0
)

=
1√
2

(
|||1〉〉〉

A
|||0〉〉〉

B
+ |||0〉〉〉

A
|||1〉〉〉

B

)
=

1√
2

(
|||01〉〉〉

AB
+ |||10〉〉〉

AB

)
. (27)

The effect of the gate was to flip the state symbols for qubitB, which results in another Bell state.
The gatenot(B) can also be written as a4×4 matrix acting on the vector representation of a two-qubit

state. However, the relationship between this matrix and the one-qubit matrix is not as obvious as for the
bra-ket expression. The matrix is

not(B) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , (28)

which swaps the top two and the bottom two entries of a state vector.
One way to see the relationship between the one and the two-qubit representation of the gatenot(B) is

to notice that because thenoop gate acts as the identity, and because we can act on different qubits inde-
pendently,noop(A)not(B) ' not(B). The matrix fornot(B) can be expressed as a “Kronecker product”
(“⊗”) of the matrices fornoop andnot:

noop(A)not(B) =

(
1 0
0 1

)
⊗

(
0 1
1 0

)
.
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=


1

(
0 1
1 0

)
0

(
0 1
1 0

)

0

(
0 1
1 0

)
1

(
0 1
1 0

)


=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (29)

The Kronecker product of two matrices expands the first matrix by multiplying each entry by the second
matrix. A disadvantage of the matrix representation of quantum gates is that it depends on the number and
order of the qubits. However, it is often easier to visualize what the operation does by writing down the
corresponding matrix.

One cannot do much with one-bit classical gates. Similarly, the utility of one-qubit gates is limited.
In particular, it is not possible to obtain a Bell state starting from|||00〉〉〉

AB
or any other product state. We

therefore need to introduce at least one two-qubit gate not expressible as the product of two one-qubit
gates. The best known such gate is the “controlled-not” (cnot) gate. Its action can be described by
the statement, “if the first bit is1, flip the second bit, otherwise do nothing”. The bra-ket and matrix
representations for this action are

cnot(AB) = |||0〉〉〉
A

A〈〈〈0|||+ |||1〉〉〉
A

A〈〈〈1|||
(
|||0〉〉〉

B

B〈〈〈1|||+ |||1〉〉〉
B

B〈〈〈0|||
)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (30)

The cnot gate is reversible because its action is undone if a secondcnot is applied. This outcome is
easy to see by computing the square of the matrix forcnot, which yields the identity matrix. As an
exercise in manipulating bras and kets, let us calculate the product of twocnot gates by using the bra-ket
representation.

cnot(AB)cnot(AB) =

(
|||0〉〉〉

A

A〈〈〈0|||+ |||1〉〉〉
A

A〈〈〈1|||
(
|||0〉〉〉

B

B〈〈〈1|||+ |||1〉〉〉
B

B〈〈〈0|||
))(

|||0〉〉〉
A

A〈〈〈0|||+ |||1〉〉〉
A

A〈〈〈1|||
(
|||0〉〉〉

B

B〈〈〈1|||+ |||1〉〉〉
B

B〈〈〈0|||
))

. (31)

The first step is to expand this expression by multiplying out. Expressions such as|||0〉〉〉
A

A〈〈〈0||| |||1〉〉〉
A

A〈〈〈1||| cancel
because of the inner product evaluation rule,A〈〈〈0|||1〉〉〉

A
= 0. One can also reorder bras and kets with different

labels and rewrite|||0〉〉〉
A

A〈〈〈0||| |||0〉〉〉
A

A〈〈〈0||| = |||0〉〉〉
A

A〈〈〈0||| to get

cnot(AB)cnot(AB) = |||0〉〉〉
A

A〈〈〈0|||+ |||1〉〉〉
A

A〈〈〈1|||
(
|||0〉〉〉

B

B〈〈〈1|||+ |||1〉〉〉
B

B〈〈〈0|||
)(
|||0〉〉〉

B

B〈〈〈1|||+ |||1〉〉〉
B

B〈〈〈0|||
)

= |||0〉〉〉
A

A〈〈〈0|||+ |||1〉〉〉
A

A〈〈〈1|||
(
|||0〉〉〉

B

B〈〈〈0|||+ |||1〉〉〉
B

B〈〈〈1|||
)

= |||0〉〉〉
A

A〈〈〈0|||+ |||1〉〉〉
A

A〈〈〈1|||noop(B)
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' |||0〉〉〉
A

A〈〈〈0|||+ |||1〉〉〉
A

A〈〈〈1|||
= noop(A)

' 1, (32)

where we used the fact that when the bra-ket expression fornoop is applied to the ket expression for a
state it acts the same as (here denoted by the symbol “'”) multiplication by the number1.

2.5 Using Many Quantum Bits

To use more than two, say five, qubits, we can just start with the state|||0〉〉〉
A
|||0〉〉〉

B
|||0〉〉〉

C
|||0〉〉〉

D
|||0〉〉〉

E
and apply

gates to any one or two of these qubits. For example,cnot(DB) applies thecnot operation from qubit
D to qubitB. Note that the order ofD andB in the label for thecnot operation matters. In the bra-
ket notation, we simply multiply the state with the bra-ket form ofcnot(DB) from the left. One can
express everything in terms of matrices and vectors, but now the vectors have length25 = 32, and the
Kronecker product expression forcnot(DB) requires some reordering to enable inserting the operation so
as to act on the intended qubits. Nevertheless, to analyze the properties of all reversible (that is, unitary)
operations on these qubits, it is helpful to think of the matrices, because a lot of useful properties about
unitary matrices are known. One important result from this analysis is that every matrix that represents
a reversible operation on quantum states can be expressed as a product of the one- and two-qubit gates
introduced so far. We say that this set of gates is “universal”.

For general purpose computation, it is necessary to have access to arbitrarily many qubits. Instead of
assuming that there are infinitely many from the start, it is convenient to have an operation to add a new
qubit, namely,add. To add a new qubit labeledX in the state|||0〉〉〉

X
, applyadd(X) to the current state. This

operation can only be used if there is not already a qubit labeledX. In the bra-ket notation, we implement
theadd(X) operation by multiplying the ket expression for the current state by|||0〉〉〉

X
.

2.6 Qubit Measurements

In order to classically access information about the state of qubits we use the measurement operation
meas. This is an intrinsically probabilistic process that can be applied to any extant qubit. For informa-
tion processing, one can think ofmeas as a subroutine or function that returns either0 or 1 as output.
The output is called the “measurement outcome”. The probabilities of the measurement outcomes are
determined by the current state. The state of the qubit being measured is “collapsed” to the logical state
corresponding to the outcome. Suppose we have just one qubit, currently in the state|||ψ〉〉〉 = α|||0〉〉〉+ β|||1〉〉〉.
Measurement of this qubit has the effect

meas
(
α|||0〉〉〉+ β|||1〉〉〉

)
=


0:|||0〉〉〉 with probability|α|2,

1:|||1〉〉〉 with probability|β|2.
(33)

The classical output is given before the new state for each possible outcome. This measurement behavior
explains why the amplitudes have to define unit length vectors: Up to a phase, they are associated with
square roots of probabilities.
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For two qubits the process is more involved. Because of possible correlations between the two qubits,
the measurement affects the state of the other one too, similar to conditioning for pbits after one “looks”
at one of them. As an example, consider the state

|||ψ〉〉〉
AB

=
2

3
|||01〉〉〉

AB
+
i2

3
|||10〉〉〉

AB
+

1

3
|||00〉〉〉

AB
. (34)

To figure out what happens when we measure qubitA, we first rewrite the current state in the form
α|||0〉〉〉

A
|||φ0〉〉〉

B
+ β|||1〉〉〉

A
|||φ1〉〉〉

B
, where|||φ0〉〉〉

B
and |||φ1〉〉〉

B
are pure states for qubitB. It is always possible to do

that. For the example of Eq.34:

|||ψ〉〉〉
AB

=
2

3
|||0〉〉〉

A
|||1〉〉〉

B
+

1

3
|||0〉〉〉

A
|||0〉〉〉

B
+
i2

3
|||1〉〉〉

A
|||0〉〉〉

B

= |||0〉〉〉
A

(2

3
|||1〉〉〉

B
+

1

3
|||0〉〉〉

B

)
+ |||1〉〉〉

A

i2

3
|||0〉〉〉

B

=

√
5

3
|||0〉〉〉

A

( 1√
5
|||0〉〉〉

B
+

2√
5
|||1〉〉〉

B

)
+
i2

3
|||1〉〉〉

A

(
|||0〉〉〉

B

)
, (35)

soα =
√

5
3

, β = i2
3

, |||φ0〉〉〉
B

= 1√
5
|||0〉〉〉

B
+ 2√

5
|||1〉〉〉

B
and|||φ1〉〉〉

B
= |||0〉〉〉

B
. The last step required pulling out the factor

of
√

5
3

to make sure that|||φ0〉〉〉
B

is properly normalized for a pure state. Now that we have rewritten the state,
the effect of measuring qubitA can be given as follows:

meas(A)
(
α|||0〉〉〉

A
|||φ0〉〉〉

B
+ β|||1〉〉〉

A
|||φ1〉〉〉

B

)
=


0:|||0〉〉〉

A
|||φ0〉〉〉

B
with probability|α|2,

1:|||1〉〉〉
A
|||φ1〉〉〉

B
with probability|β|2.

(36)

For the example, the measurement outcome is0 with probability 5
9
, in which case the state collapses to

|||0〉〉〉
A

(
1√
5
|||0〉〉〉

B
+ 2√

5
|||1〉〉〉

B

)
. The outcome is1 with probability 4

9
, in which case the state collapses to|||1〉〉〉

A
|||0〉〉〉

B
.

The probabilities add up to1 as they should.
The same procedure works for figuring out the effect of measuring one of any number of qubits. Say

we want to measure qubitB among qubitsA,B,C,D, currently in state|||ψ〉〉〉
ABCD

. First rewrite the state in
the formα|||0〉〉〉

B
|||φ0〉〉〉

ACD
+ β|||1〉〉〉

B
|||φ1〉〉〉

ACD
, making sure that theACD superpositions are pure states. Then the

outcome of the measurement is0 with probability |α|2 and1 with probability |β|2. The collapsed states
are|||0〉〉〉

B
|||φ0〉〉〉

ACD
and|||1〉〉〉

B
|||φ1〉〉〉

ACD
, respectively.

Probabilities of the measurement outcomes and the new states can be calculated systematically. For
example, to compute the probability and state for outcome0 of meas(A) given the state|||ψ〉〉〉

AB
, one can first

obtain the unnormalized ket expression|||φ′0〉〉〉B = A〈〈〈0||||||ψ〉〉〉
AB

by using the rules for multiplying kets by bras.
The probability is given byp0 = B〈〈〈φ′0|||φ′0〉〉〉B , and the collapsed, properly normalized pure state is

|||0〉〉〉
A
|||φ′0〉〉〉B/

√
p0 = |||0〉〉〉

A

A〈〈〈0||||||ψ〉〉〉
AB
/
√
p0, (37)

The operatorP0 = |||0〉〉〉
A

A〈〈〈0||| is called a “projection operator” or “projector” for short. If we perform the same
computation for the outcome1, we find the projectorP1 = |||1〉〉〉

A

A〈〈〈1|||. The two operators satisfyPa
2 = Pa,
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Pa
† = Pa andP0 +P1 = 1l. In terms of the projectors, the measurement’s effect can be written as follows:

meas(A)|||ψ〉〉〉
AB

=


0:P0|||ψ〉〉〉

AB
/
√
p0 with probabilityp0,

1:P1|||ψ〉〉〉
AB
/
√
p1 with probabilityp1,

(38)

wherep0 = AB〈〈〈ψ|||P0|||ψ〉〉〉
AB

andp1 = AB〈〈〈ψ|||P1|||ψ〉〉〉
AB

. In quantum mechanics, any pair of projectors satisfying
the properties given above is associated with a potential measurement whose effect can be written in the
same form. This is called a binary “von Neumann”, or “projective”, measurement.

2.7 Mixtures and Density Operators

The measurement operation “reads out” information from qubits to pbits. What if we discard the pbit that
contains the measurement outcome? The result is that the qubits are in a probabilistic “mixture” of two
pure states. Such mixtures are a generalization of pure states. The obvious way to think about a mixture
is that we have a probability distribution over pure quantum states. For example, after discarding the pbit
and qubitA in Eq.36, we can write the state ofB asρ = {|α|2:|||φ0〉〉〉

B
, |β|2:|||φ1〉〉〉

B
}, using the notation for

probability distributions introduced earlier.
Mixtures frequenty form when using irreversible operations such as measurement. Except for mea-

surement, the quantum gates that we have introduced so far are reversible and therefore transform pure
states to pure states, so that no mixtures can be formed. One of the fundamental results of reversible classi-
cal and quantum computation is that there is no loss in power in using only reversible gates. Specifically, it
is possible to change a computation that includes irreversible operations to one that accomplishes the same
goal, has only reversible operations and is efficient in the sense that it uses at most polynomial additional
resources. However, the cost of using only reversible operations is not negligible. In particular, for ease
of programming, and more importantly, when performing repetitive error-correction tasks (see [12]), the
inability to discard or reset qubits can be very inconvenient. We therefore introduce additional operations
that enable resetting and discarding.

Although resetting has a so-called “thermodynamic” cost (think of the heat generated by a computer), it
is actually a simple operation. Thereset operation applied to qubitA can be thought of as the result of first
measuringA, then flippingA if the measurement outcome is|||1〉〉〉, and finally discarding the measurement
result. Using the notation of Eq.36, the effect on a pure state|||ψ〉〉〉

AB
is given by:

reset(A)|||ψ〉〉〉
AB

= {|α|2:|||0〉〉〉
A
|||φ0〉〉〉

B
, |β|2:|||0〉〉〉

A
|||φ1〉〉〉

B
}. (39)

To apply reset to an arbitrary probability distribution, you apply it to each of the distribution’s pure
states and combine the results to form an expanded probability distribution. Thediscard(A) operation
is reset(A) followed by discarding qubitA. Therefore, in the expression for the state afterreset(A), all
the |||0〉〉〉

A
are removed. It is an important fact that every physically realizable quantum operation, whether

reversible or not, can be expressed as a combination ofadd operations, gates from the universal set and
discard operations.

The representation of mixtures using probability distributions over pure states is redundant. That is,
there are many probability distributions that are physically indistinguishable. A non-redundant description
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of a quantum state can be obtained by using “density operators”. The density operator for the mixtureρ
given in Eq.39 is given by

ρ̂ = |α|2|||φ0〉〉〉
B

B〈〈〈φ0|||+ |β|2|||φ1〉〉〉
B

B〈〈〈φ1|||. (40)

The general rule for calculating the density operator from a probability distribution is as follows: For
each pure state|||φ〉〉〉 in the distribution, calculate the operators|||φ〉〉〉〈〈〈φ||| and sum them weighted by their
probabilities.

There is a way to apply gates to the density operators defined by states. If the gate acts by the unitary
operatorU , then the effect of applying it tôρ is given byUρ̂U †, whereU † is the conjugate transpose of
U . (In the bra-ket expression forU , U † is obtained by replacing all complex numbers by their conjugates,
and terms such as|||φ〉〉〉〈〈〈ϕ||| by |||ϕ〉〉〉〈〈〈φ|||.)

The relationship between a qubit’s state space and a sphere can be explained in terms of the qubit’s
density operators. In matrix form, this operator is a2× 2 matrix, which can be written uniquely as a sum
(1l + xσx + yσy + zσz)/2. One can check that if the density operator|||ψ〉〉〉〈〈〈ψ||| for a qubit’s pure state is
written as such a sum,

|||ψ〉〉〉〈〈〈ψ||| = (1l + xσx + yσy + zσz)/2, (41)

then the vector(x, y, z) thus obtained is on the surface of the unit sphere in three dimensions. In fact, for
every vector(x, y, z) on the unit sphere, there is a unique pure state satisfying Eq.41. Since the density
operators for mixtures are arbitrary, convex (that is probabilistic) sums of pure states, the set of(x, y, z)
thus obtained for mixtures fills out the unit ball. The rotations introduced earlier modify the vector(x, y, z)
in the expected way, by rotation of the vector around the appropriate axis. See [11] for more details.

2.8 Quantum Computation

The model of computation defined by the one- and two-qubit gates and the operations of adding (add),
measuring (meas) and discarding (discard) qubits is called the “quantum network model”. A sequence
of instructions for applying these operations is called a “quantum network”. Quantum computation extends
the network model by providing a means for repeating blocks of instructions. Such means can be specified
by a formal machine model of computation. There are several such models of classical and quantum
computers. One of the best known is the Turing machine, which has a quantum analogue, the quantum
Turing machine. This model has its uses for formal studies of computation and complexity, but is difficult
to program. Fortunately, as mentioned in Sect.1, there is no loss of computational power if the means
for repeating instructions is provided by a classical computer that can apply gates and other operations to
qubits. A general quantum algorithm is a program written for such a computer.

There are three practical methods that can be used to write quantum networks and algorithms. The
first is to use the names for the different operations and algebraically multiply them. The second is to draw
quantum networks, which are pictorial representations of the sequence of steps in time, somewhat like
flowcharts without loops. The third is to use a generic programming language enhanced with statements
for accessing and modifying quantum bits. The first two methods work well as long as the sequence is
short and we do not use many operations that depend on measurement outcomes or require loops. They
are often used to describe subroutines of longer algorithms presented either in words or by use of the third
method.

17



To see how to use the different methods and also to illustrate the power of quantum computation, we
work out a short quantum algorithm that solves the following problem:
The Parity Problem: Given is a “black box” quantum operationBB(ABC) that has the following effect
when applied to a logical basis state:

BB(ABC)|||aAaB〉〉〉
AB
|||aC〉〉〉

C
= |||aAaB〉〉〉

AB
|||aC ⊕ (bAaA ⊕ bBaB)〉〉〉

C
, (42)

wherebA andbB are0 or 1. The actual values ofbA andbB are unknown. The problem is to determine
whatbA andbB are by using the black box only once.

The terminology and the definition of the operationBB(ABC) require explanation. In computation, we
say that an operation is a black box or an “oracle” if we have no access whatsoever to how the operation
is implemented. In a black box problem, we are promised that the black box implements an operation
from a specified set of operations. In the case of the parity problem, we know that the operation is
to add one of four possible parities (see below). The problem is to determine which parity is added
by using the black box in a network. Black box problems serve many purposes. One is to study the
differences between models of computation, just as we are about to do. In fact, black box problems
played a crucial role in the development of quantum algorithms by providing the first and most convincing
examples of the power of quantum computers [13, 14]. Some of these examples involve generalizations of
the parity problem. Another purpose of black box problems is to enable us to focus on what can be learned
from the “input/output” behavior of an operation without having to analyze its implementation. This is
useful because in many cases of interest, it is very difficult to exploit knowledge of the implementation
to determine a desirable property of the operation. A classical example is the well-known satisfiability
problem, in which we are given a classical circuit with one output bit and we need to determine whether
there is an input for which the output is1. Instead of trying to analyze the circuit, one can look for and use
a general purpose black-box search algorithm to find the “satisfying” input.

In the definition of the effect ofBB(ABC), the operation “⊕” is addition modulo2, so1 ⊕ 1 = 0, and
all the other sums are as expected. As the state symbols now have a numeric meaning, we use the number
font for states. To see whatBB does, suppose thatbA andbB are both1. ThenBB adds (modulo2) the
parity of the logical state inAB to the logical state ofC. The parity of a logical state is0 if the number of
1’s is even and1 if it is odd. The action ofBB for this example is given by:

BB(ABC)|||00〉〉〉
AB
|||0〉〉〉

C
= |||00〉〉〉

AB
|||0〉〉〉

C

BB(ABC)|||01〉〉〉
AB
|||0〉〉〉

C
= |||01〉〉〉

AB
|||0⊕ 1〉〉〉

C

= |||01〉〉〉
AB
|||1〉〉〉

C

BB(ABC)|||10〉〉〉
AB
|||1〉〉〉

C
= |||10〉〉〉

AB
|||1⊕ 1〉〉〉

C

= |||10〉〉〉
AB
|||0〉〉〉

C

BB(ABC)|||11〉〉〉
AB
|||0〉〉〉

C
= |||11〉〉〉

AB
|||0〉〉〉

C
(43)

The action of the black box is extended to superpositions by “linear extension”. This means that to apply
BB to a superposition of the logical states, simply apply it to each logical summand and add the results.
Different values ofbA andbB correspond to different parities. For example, ifbA = 1 andbB = 0, then the
parity of the state inA is added to the state inC. In this sense, what is added is the parity of a subset of
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the two qubitsAB. Thus, one way of thinking about the problem is that we wish to find out which subset’s
parity the black box is using.

We can give an algorithm that solves the parity problem using each of the three methods for describing
quantum networks. Here is an algebraic description of a solution,qparity(ABC), given as a product of
quantum gates that involves one use of the black box. We defer the explanation of why this solution works
until after we show how to represent the algorithm pictorially using quantum networks.

qparity(ABC) = meas(B)H(B)meas(A)H(A)BB(ABC)H(C)not(C)add(C)H(B)add(B)H(A)add(A).

(44)

The output of the algorithm is given by the classical outputs of the measurements of qubitA, which yields
bA, and qubitB, which yieldsbB. As is conventional, in writing products of linear operators, the order of
application in Eq.44 is right to left, as in a product of matrices applied to a column vector. This order
of terms in a product is, however, counterintuitive, particularly for operations to be performed one after
the other. It is therefore convenient to use left to right notation, as is done in describing laser or radio-
frequency pulse sequences. One way to make it clear that left to right order is used involves putting dots
between gates as in the following version of Eq.44:

qparity(ABC) = add(A).H(A).add(B).H(B).add(C).not(C).H(C).BB(ABC).H(A).meas(A).H(B).meas(B).

(45)

In this representation, the first operation isadd(A), the second isH(A) (the Hadamard gate on qubitA) and
so on.

The algebraic specification of the algorithm as products of gates does not make it easy to see why the
algorithm works. It is also difficult to see which operations depend on each other. Such dependencies
are used to determine whether the operations can be “parallelized”. Quantum networks make these tasks
simpler. The quantum network for the above sequence is shown in Fig.2.

bA

bB

1 2 3 4 5
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FIG. 2: Quantum network for solving the parity problem. A quantum network has a (horizontal in this
case) line for each qubit. The line can be thought of as the time-line for the qubit and is shown in blue.
Each gate is drawn as a box, circle, or other element intercepting the lines of the qubits it acts on. In
this case, time runs from left to right. Each qubit’s time-line starts at the point where it is added. In this
example, the qubits’ time-lines end when they are measured, at which point a classical bit (brown time
line) containing the measurement outcome is introduced. The operationBB is illustrated as a black box.
The numbers underneath the network refer to checkpoints used to explain how the network solves the
parity problem.

To understand how the quantum network of Fig2 solves the parity problem, we can follow the states
as the network is “executed” from left to right, using the indicated checkpoints. Using vector notation for
the states, at checkpoint1 the state is

|||ψ〉〉〉1 =

(
1
0

)
⊗

(
1
0

)
⊗

(
1
0

)
, (46)

where we used Kronecker product notation to denote the states ofA, B andC, in this order. In the next
time step, the network involves applying Hadamard gates (Eq.13) to A andB and anot gate (Eq.9) to C.
At checkpoint2, this operation results in the state

|||ψ〉〉〉2 =

(
1/
√

2

1/
√

2

)
⊗

(
1/
√

2

1/
√

2

)
⊗

(
0
1

)
. (47)

Next, a Hadamard gate is applied toC, so that at checkpoint3 we have,

|||ψ〉〉〉3 =

(
1/
√

2

1/
√

2

)
⊗

(
1/
√

2

1/
√

2

)
⊗

(
1/
√

2

−1/
√

2

)
. (48)

The next event involves applying the black box. To understand what happens, note that the effect of the
black box can be described as “conditional on each logical state ofAB, if the parity according tobA and
bB is 1, then applynot to C” The current state ofC is such that ifnot is applied, only the sign changes:

not

(
1/
√

2

−1/
√

2

)
=

(
0 1
1 0

) (
1/
√

2

−1/
√

2

)
= −

(
1/
√

2

−1/
√

2

)
. (49)

Now AB is in a superposition of each of the logical states, and conditional on the logical state and the
(hidden) parity, the sign changes. As a result, although the state ofC does not change, a phase is “kicked
back” to AB. A generalization of this effect is at the heart of A. Kitaev’s version of P. Shor’s quantum
factoring algorithm (Sect.2.10). At the next checkpoint, and after some arithmetic to check which logical
states change sign, we can write the state as

|||ψ〉〉〉4 =

(
1/
√

2

(−1)bA/
√

2

)
⊗

(
1/
√

2

(−1)bB/
√

2

)
⊗

(
1/
√

2

−1/
√

2

)
. (50)
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Notice that qubitsA andB are in orthogonal states for different values ofbA, bB. It suffices to apply the
Hadamard transform again toA andB to get

|||ψ〉〉〉4 =

(
1− bA
bA

)
⊗

(
1− bB
bB

)
⊗

(
1/
√

2

−1/
√

2

)
. (51)

Measurements ofA andB now reveal the previously unknownbA andbB.
As can be seen, the visual representation of a quantum network eases the tasks of following what

happens. This is why it is used extensively for presenting basic subroutines and algorithms in quantum
computation. A guide to the commonly used network elements is given in Fig.3.

Name Gate Symbols Algebraic Matrix

Add/prepare add
If applied to existing qubit:
{|||0〉〉〉〈〈〈0|||, |||0〉〉〉〈〈〈1|||}

(operator mixture)

(
1 0
0 0

)
,

(
0 1
0 0

)
Measure meas {0:|||0〉〉〉〈〈〈0|||, 1:|||1〉〉〉〈〈〈1|||}

(
1 0
0 0

)
,

(
0 0
0 1

)
Not or not, σx |||0〉〉〉〈〈〈1|||+ |||1〉〉〉〈〈〈0|||

(
0 1
1 0

)
Hadamard H e−iσyπ/4σz

1√
2

(
1 1
1 −1

)
Phase
change

eiφ
S(eiφ) eiφ/2e−iσzφ/2

(
1 0
0 eiφ

)
z-Rotation φ Zφ e−iσzφ/2

(
e−iφ/2 0

0 eiφ/2

)
y-Rotation θ Yθ e−iσyθ/2

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
x-Rotation θ Xθ e−iσxθ/2

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
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Controlled
not

or cnot

|||0〉〉〉
A

A〈〈〈0|||+ |||1〉〉〉
A

A〈〈〈1|||σx
(B)

e−iσz
(A)π/4e−i 1

2
(1l−σz

(A))σx
(B)π/2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


ZZ
rotation

θ (ZZ)θ e−iσz
(A)σz

(B)θ/2.


e−iθ/2 0 0 0

0 eiθ/2 0 0
0 0 eiθ/2 0
0 0 0 e−iθ/2



Controlled
rotation

θ

cUθ |||0〉〉〉
A

A〈〈〈0|||+ |||1〉〉〉
A

A〈〈〈1|||e−iσU
(B)θ/2


1 0
0 1

0 0
0 0

0 0
0 0

e−iσUθ/2



Toffoli gate c2not 1l−|||11〉〉〉
AB

AB〈〈〈11|||+ |||11〉〉〉
AB

AB〈〈〈11|||σx
(C)

FIG. 3: Quantum network elements.

When designing or describing complicated algorithms for quantum computers, providing everything
in terms of quantum networks can become difficult, particularly when an important part of the algorithm
consists of computations that are best done on a classical computer. For example, a full description of
Shor’s algorithm for factoring whole numbers (see Sect.2.10) includes a significant amount of classical
preprocessing, which determines choices made in the quantum algorithm, and classical postprocessing,
which computes a factor from the measured result by a continued fraction algorithm. For such algorithms,
one can use a programming language similar to Pascal, BASIC or C enhanced with statements to access
quantum bits and to apply quantum operations. For algorithm design, computer scientists often use a
semi-formal language called “pseudocode” [8]. With a simple extension called “quantum pseudocode”,
the algorithm for the parity problem can be written as follows:

BBPARITY(BB)
Input: Access to a quantum black boxBB that acts on three qubits by adding a parity function of the
first two qubits to the third.
Output: The two bitsbA andbB of the parity function.
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foreach i ∈ {A,B,C}
paiq← |||0〉〉〉

C: Initialize three one-qubit registers paiq, i = A,B,C. The corner bracket annota-
tion declares ai as a quantum register.

end
paCq← σxpaCq
foreach i ∈ {A,B,C}

paiq← Hpaiq
end
paq← BBpaq

C: paq refers to the three qubit register consisting of the paiq
foreach i ∈ {A,B}

paiq← Hpaiq
bi ←measpaiq

end
return bA, bB

end

Any classical programming language can be extended with statements to access and manipulate quan-
tum registers.

Now that we have looked at the quantum solution of the parity problem, let us consider the question
of the least number of black-box applications required by a classical algorithm: Each classical use of the
black box can only give us one bit of information. In particular, one use of the black box with inputaAaB

reveals only the parity ofaAaB according to the hidden parametersbA andbB. Each use of the black box
can therefore only help us distinguish between two subsets of the four possible parities. At least two uses
of the black box are therefore necessary. Two uses are also sufficient: To determine which of the four
parities is involved, use the black box first with inputaAaB = 10 and then with inputaAaB = 01. As a
result of this argument, one can consider the parity problem as a simple example of a case in which there
is a more efficient quantum algorithm than is possible classically. However, it is worth noting that the
comparison is not entirely fair: A truly classical oracle answering parity questions or implementing the
black box on the states of classical bits is useless to a quantum algorithm. To take advantage of such an
algorithm it must be possible to use superpositions that are not implicitly collapsed. Collapse can happen
if the oracle makes a measurement or otherwise “remembers” the question that it was asked.

2.9 Resource Accounting

When trying to solve a problem using quantum information processing, an important issue is to determine
what physical resources are available and how much of each resource is needed for the solution. As
mentioned before, in classical information, the primary resources are bits and operations. The number of
bits used by an algorithm is called its “space” requirement. The number of operations used is called its
“time” requirement. If parallel computation is available, one can distinguish between the total number of
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operations (“work”) and the number of parallel steps (“time”).
When quantum information processing is used, the classical resources are still relevant for running

the computer that controls the quantum system and performs any pre- and post-processing tasks. The
main quantum resources are analogous to the classical ones: “quantum space” is the number of qubits
needed, and “quantum time” the number of quantum gates. Because it turns out that reset operations have
a thermodynamic cost, one can count irreversible quantum operations separately. This accounting of the
resource requirements of algorithms and of the minimum resources needed to solve problems forms the
foundations of quantum complexity theory.

As a simple example of resource accounting, consider the algorithm for the parity problem. No clas-
sical computation is required to decide which quantum gates to apply, or to determine the answer from
the measurement. The quantum network consists of a total of 11 quantum gates (including theadd’s and
meas’s operations) and one oracle call (the application of the black box). In the case of oracle problems,
one usually counts the number of oracle calls first, as we have done in discussing the algorithm. The
network is readily parallelized to reduce the time resource to 6 steps.

2.10 From Factoring to Phase Estimation

The publication of Shor’s quantum algorithm for efficiently factoring numbers [4, 5] was the key event that
stimulated many theoretical and experimental investigations of quantum computation. One of the reasons
why this algorithm is so important is that the security of widely used public key cryptographic protocols
relies on the conjectured difficulty of factoring large numbers. An elementary overview of these protocols
and the quantum algorithm for breaking them is in [15]. Here, we outline the relationship between fac-
toring and the powerful technique of phase estimation. This relationship helps in understanding many of
the existing quantum algorithms and was first explained in [16], motivated by Kitaev’s version [17] of the
factoring algorithm.

The factoring problem requires writing a whole numberN as a product of primes. (Primes are whole
numbers greater than1 that are divisible without remainder only by1 and themselves.) Shor’s algorithm
solves this problem by reducing it to instances of the order-finding problem, which will be defined below.
The reduction is based on basic number theory and involves efficient classical computation. At the core of
Shor’s algorithm is a quantum algorithm that solves the order-finding problem efficiently. In this case, an
algorithm is considered efficient if it uses resources bounded by a polynomial in the number of digits of
N . For more information on the requisite number theory, see any textbook on number theory [18, 19].

We begin by showing that factoring reduces to order finding. The first observation is that to factor
a whole number it is sufficient to solve the factor-finding problem, whose statement is: Given a whole
numberN find a proper factor ofN , if one exists. A “factor” ofN is a whole numberf that satisfies
N = fg for some whole numberg. The factorf is “proper” if f 6= 1 andf 6= N . For example, if
N = 15, then3 and5 are its proper factors. For some numbers it is easy to find a proper factor. For
example, you can tell thatN is even from the least significant digit (in decimal or binary), in which case2
is a proper factor (unlessN = 2, a prime). But many numbers are not so easy. As an example, you can try
to find a proper factor ofN = 149573 by hand1. You can complete the factorization of a whole number
by recursively applying an algorithm for the factor-finding problem to all the proper factors found.

1

149573=373*401
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Before we continue the reduction of factoring to order finding, we briefly explain modular arithmetic,
which both simplifies the discussion and is necessary to avoid computing with numbers that have expo-
nential numbers of digits. We say thata andb are “equal moduloN ”, written asa = b mod N , if a − b
is divisible byN (without remainder). For example,3 = 18 mod 15 = 33 mod 15. Equality moduloN
is well-behaved with respect to addition and multiplication. That is, ifa = b mod N andc = d mod N ,
thena+ c = b+ d mod N andac = bd mod N . For factoringN , we will be looking for whole numbers
a that are divisible by a proper factor ofN . If a has this property, then so does anyb with b = a mod N .
We therefore perform all arithmetic “moduloN ”. One way to think about this is that we only use whole
numbersa that satisfy0 ≤ a ≤ N − 1. We can implement an arithmetic operation moduloN by first ap-
plying the operation in the usual way and then computing the remainder after division byN . For example,
to obtainab mod N , we first computeab. The uniquec such that0 ≤ c ≤ N −1 andc = ab mod N is the
remainder after division ofab byN . Thusc is the result of multiplyinga by b moduloN . Consistent with
this procedure, we can think of the expressiona mod N as referring to the remainder ofa after division
byN .

The second observation in the reduction of factoring to order finding is that it is sufficient to find a
whole numberr with the property thatr2 − 1 is a multiple ofN but r − 1 andr + 1 are not. Using the
language of modular arithmetic, the property is expressed asr2 = 1 mod N but r 6= 1 mod N andr 6=
−1 mod N . Because1 mod N and−1 mod N are the obvious square roots of1 mod N , we say thatr is
a “non-trivial square root of unity” (moduloN ). For such anr, one can writer2−1 = (r−1)(r+1) = mN
for some whole numberm. This implies that every prime factorp of N divides either(r − 1) or (r + 1)
so that either(r − 1) or (r + 1) is or shares a factor withN . Suppose thatr − 1 is or shares such a factor.
Becauser − 1 is not a multiple ofN , the greatest common divisor ofr − 1 andN is a proper factor of
N . Since there exists an efficient classical algorithm (the “Euclidean algorithm”) for finding the greatest
common divisor, we can easily find the desired proper factor.

The examples ofN = 15 andN = 21 serve to illustrate the key features of the algorithm. ForN = 15,
possible choices forr arer = 4 (42 − 1 = 1 ∗ 15) andr = 11 (112 − 1 = 120 = 8 ∗ 15). For the first
choice, the proper factors emerge immediately:4 − 1 = 3, 4 + 1 = 5. For the second, it is necessary to
determine the greatest common divisors. Let gcd(x, y) stand for the greatest common divisor ofx andy.
The proper factors are gcd(11 − 1, 15) = gcd(10, 15) = 5 and gcd(11 + 1, 15) = gcd(12, 15) = 3. For
N = 21, one can taker = 8, as82 − 1 = 63 = 3 ∗ 21. In this case,8 − 1 = 7 is a proper factor and
gcd(8 + 1, 21) = 3 is another.

ForN even or a power of a prime it is not always possible to find a non-trivial square root of unity.
Because both of these cases can be handled efficiently by known classical algorithms, we can exclude
them. In every other case, such numbersr exist. One way to find such anr is to start from any whole
numberq with 1 < q < N . If gcd(q,N) = 1, then according to a basic result in number theory there
is a smallest whole numberk > 1 such thatqk − 1 = 0 mod N . The numberk is called the “order” of
q moduloN . If k is even, sayk = 2 l, then(ql)2 = 1 mod N , soql is a (possibly trivial) square root
of unity. For the example ofN = 15, we can tryq = 2. The order of2 modulo15 is 4, which gives
r = 22 = 4, the first of the two choices in the previous paragraph. ForN = 21, again withq = 2, the
order is6: 26−1 = 63 = 3∗21. Thus,r = 23 = 8. We can also tryq = 11, in which case with foresight it
turns out that116 − 1 is divisible by21. A possible problem appears, namely, the powersqk that we want
to compute are extremely large. But modular arithmetic can be used to avoid this problem. For example,
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to find the order of11 modulo21 by a direct search, we can perform the following computation:

112 = 121 = 5 ∗ 21 + 16 = 16 mod 21
113 = 11 ∗ 112 = 11 ∗ 16 mod 21 = 11 ∗ (−5) mod 21

= −55 mod 21 = −3 ∗ 21 + 8 mod 21 = 8 mod 21
114 = 11 ∗ 113 = 11 ∗ 8 mod 21 = 4 ∗ 21 + 4 mod 21 = 4 mod 21
115 = 11 ∗ 114 = 11 ∗ 4 mod 21 = 2 mod 21
116 = 11 ∗ 115 = 11 ∗ 2 mod 21 = 1 mod 21

(52)
In general such a direct search for the order ofq moduloN is very inefficient, but as we will see, there is
an efficient quantum algorithm that can determine the order.

A factor-finding algorithm based on the above observations is the following:

FACTORFIND(N )
Input: A positive, non-prime whole numberN .
Output: A proper factorf of N , that isf is a whole number such that1 < f < N andN = fg for some
whole numberg.

1. If N is even, returnf = 2.

2. If N = pk for p prime, returnp.

3. Randomly pick1 < q < N − 1.

3.a. If f = gcd(q,N) > 1 returnf .

4. Determine the orderk of q moduloN using the quantum order-finding algorithm.

4.a. If k is not even, repeat at step 3.

5. Write k = 2l and determiner = ql mod N with 1 < r < N .

5.a. If 1 < f = gcd(r − 1, N) < N , returnf .

5.b. If 1 < f = gcd(r + 1, N) < N , returnf .

5.c. If we failed to find a proper factor, repeat at step 3.

The efficiency of this algorithm depends on the probability that a randomly chosenq at step 3 results
in finding a factor. By using an analysis of the group of numbersq that satisfy gcd(q,N) = 1, it can be
shown that this probability is sufficiently large.

The main problem that remains to be solved is that of finding the order ofq mod N . A direct search
for the order ofq mod N involves computing the sequence

1→ q → q2 mod N → . . .→ qk−1 mod N → 1 = qk mod N. (53)

This sequence can be conveniently visualized as a cycle whose length is the order ofq mod N (Fig. 4).
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The cycle ofq mod N

1

q

q2 mod N

. . .

qk−1 mod N

qk−2 mod N

The cycle of8 mod 15

1

8

4

2

FIG. 4: Multiplicative cycles ofq mod N . Each number on a cycle is obtained from the previous one by
multiplication byq mod N .

To introduce the quantum algorithm, we first associate the logical quantum states|||0〉〉〉, |||1〉〉〉, . . . |||N − 1〉〉〉
with the numbers0, 1, . . . , N − 1. The mapf which takes each number on the cycle to the next number
along the cycle is given byf(x) = qx mod N . For q satisfying gcd(q,N) = 1, the mapf permutes not
only the numbers on the cycle, but all the numbers moduloN . As a result, the linear operator̂f defined
by f̂ |||x〉〉〉 = |||f(x)〉〉〉 = |||qx mod N〉〉〉 is unitary. The quantum algorithm deduces the length of the cycle
for q by making measurements to determine properties of the action off̂ on superpositions of the states
|||qs mod N〉〉〉. To illustrate the basic ideas, we work out the example ofN = 15 andq = 8. The action of
f̂ on the states|||1〉〉〉, |||8〉〉〉, |||4〉〉〉, |||2〉〉〉 in the cycle of8 mod 15 is completely determined by the eigenstates and
eigenvalues of̂f . For cyclicly acting permutations, a basis of eigenstates is given by the “Fourier” basis
for the space spanned by the states in a cycle. For the cycle of interest, the Fourier basis consists of the
states

|||ψ0〉〉〉 = 1
2

(
|||1〉〉〉+ |||8〉〉〉+|||4〉〉〉+ |||2〉〉〉

)
|||ψ1〉〉〉 = 1

2

(
|||1〉〉〉+i|||8〉〉〉−|||4〉〉〉−i|||2〉〉〉

)
|||ψ2〉〉〉 = 1

2

(
|||1〉〉〉− |||8〉〉〉+|||4〉〉〉− |||2〉〉〉

)
|||ψ3〉〉〉 = 1

2

(
|||1〉〉〉−i|||8〉〉〉−|||4〉〉〉+i|||2〉〉〉

) (54)

The phases of thel’th state of the cycle occurring in the sum for|||ψm〉〉〉 can be written asilm. It follows that
f̂ |||ψm〉〉〉 = im|||ψm〉〉〉, that is, the eigenvalue of̂f for |||ψm〉〉〉 is im. Note that in the complex numbers, the powers
of i are all the fourth roots of unity. In general, the Fourier basis for the cycle. . . → |||ql mod N〉〉〉 → . . .
consists of the states|||ψm〉〉〉 =

∑
l ω

lm|||ql mod N〉〉〉, whereω = ei2π/k is a primitivek’th root of unity. (The
complex numberx is a primitivek’th root of unity if k is the smallest whole numberk > 0 such that
xk = 1. For example, both−1 andi are fourth roots of unity, but onlyi is primitive.)
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It is, of course, possible to express the logical state|||1〉〉〉 using the Fourier basis:

|||1〉〉〉 =
1

2

(
|||ψ0〉〉〉+ |||ψ1〉〉〉+ |||ψ2〉〉〉+ |||ψ3〉〉〉

)
. (55)

The key step of the quantum algorithm for order finding consists of a measurement to estimate a random
eigenvalue of̂f whose associated eigenstate occurs in the expression for|||1〉〉〉 in terms of the Fourier basis.
If the eigenvalue found is a primitivek’th root of unity, we infer that the cycle length is divisible byk and
check (using a classical algorithm) whether this is the order ofq. In the example, the random eigenvalues
are1 (the only primitive first root of unity),i and−i (primitive fourth roots of unity) and−1 (the primitive
second root of unity). The order is found if the random eigenvalue is a primitive fourth root of unity, which
happens with probability1/2 in this case.

The quantum algorithm for obtaining an eigenvalue is called the “phase estimation” algorithm. It
exploits a more general version of the phase kick back we encountered in the solution of the parity problem.
The phase kick back transfers the eigenvalue of an eigenstate off̂ to a Fourier basis on a number of
additional qubits called “helper” or “ancilla” qubits. Which Fourier state results is then determined by
a subroutine called the “measured quantum Fourier transform”. We introduce these elements in the next
paragraphs. Their combination for solving the general order-finding problem is shown in Fig.9.

Fig. 5 shows how to kick back the eigenvalue of an eigenstate off̂ using a network implementing the
controlled-̂f operation.

f̂

1√
2
(|||0〉〉〉+ |||1〉〉〉)

|||ψm〉〉〉

1√
2
(|||0〉〉〉+ im|||1〉〉〉)

|||ψm〉〉〉

FIG. 5: Phase estimation with one qubit. The input is a product state on one ancilla qubit and on a second
quantum system as shown. The state|||ψm〉〉〉 on the second system is an eigenstate off̂ . For the example
under discussion (see Eq.54), the eigenvalue isim. A controlled-f̂ operation is applied to the input, that is,
f̂ is applied to the second system conditional on|||1〉〉〉 for the ancilla qubit. In the bra-ket notation, the total
operation can be written as|||0〉〉〉〈〈〈0|||+ |||1〉〉〉〈〈〈1|||f̂ (system labels have been omitted). Sincef̂ changes only the
phase of its input, the second system is unchanged, but the phase modifies the ancilla qubit’s superposition
as shown.

The network in Fig.5 can be used with input|||1〉〉〉 on the second system. From Eq.55and the superposition
principle, it follows that the output correlates the different phase kickback states with the four eigenvectors
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|||ψm〉〉〉. That is, the network implements the following transformation:

1

2
√

2
(|||0〉〉〉+ |||1〉〉〉)


|||ψ0〉〉〉

+|||ψ1〉〉〉
+ |||ψ2〉〉〉

+ |||ψ3〉〉〉

 −→ 1

2
√

2


(|||0〉〉〉+ i0|||1〉〉〉) |||ψ0〉〉〉

+ (|||0〉〉〉+ i1|||1〉〉〉) |||ψ1〉〉〉
+ (|||0〉〉〉+ i2|||1〉〉〉) |||ψ2〉〉〉

+ (|||0〉〉〉+ i3|||1〉〉〉) |||ψ3〉〉〉

 (56)

The hope is that a measurement of the first qubit can distinguish between the four possible phases that can
be kicked back. However, because the four states are not mutually orthogonal, they are not unambiguously
distinguishable by a measurement. To solve this problem, we use a second qubit and a controlled-f̂ 2 as
shown in Fig.6.

f̂ f̂ 2

1
2


|||0〉〉〉
+|||1〉〉〉

+|||2〉〉〉
+|||3〉〉〉



|||ψm〉〉〉

 |||um〉〉〉 =1
2


i0m|||0〉〉〉
+i1m|||1〉〉〉

+i2m|||2〉〉〉
+i3m|||3〉〉〉



|||ψm〉〉〉

FIG. 6: Phase estimation with two qubits. Using two qubits ensures distinguishability of the eigenvalues
of f̂ for the states|||ψm〉〉〉. The states of the input qubits are used to represent the numbers from0 to 3 in
binary. The most significant bit (the “two”’s digit in the binary representation) is carried by the top qubit.
That is, we make the following identification:|||0〉〉〉 = |||00〉〉〉, |||1〉〉〉 = |||01〉〉〉, |||2〉〉〉 = |||10〉〉〉 and |||3〉〉〉 = |||11〉〉〉. It
follows that the network has the effect of applyingf̂m conditional on the input qubits’ logical state being
|||m〉〉〉.

The four possible states|||um〉〉〉 that appear on the ancilla qubits in the network of Fig.6 are the Fourier
basis for the cycle0→ 1→ 2→ 3→ 0 and are therefore orthonormal. If we apply the network of Fig.6
with |||1〉〉〉 instead of|||ψm〉〉〉 at the lower input, the output correlates the four|||ψm〉〉〉 in the superposition with
the|||um〉〉〉, which makes the information about the eigenvalues off̂ available in the Fourier basis of the two
ancilla qubits. This approach has the advantage that the states are known, whereas in the Fourier basis for
the cycle ofq mod N , the states depend on the numbers in the cycle, which are not known in advance
(except in very simple cases, such as the example we are working with).

To learn one of the eigenvalues off̂ , the last step is to make a “measurement in the Fourier basis”. For
one qubit representing the binary numbers0 and1, the Fourier basis is1√

2
(|||0〉〉〉+ |||1〉〉〉) and 1√

2
(|||0〉〉〉 − |||1〉〉〉),

which is constructed as discussed after Eq.54, but using the square root of unityω = −1 instead of the
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fourth rooti. To make a measurement that determines which of the two basis vectors is present, it suffices
to apply the Hadamard transformH and make a standard measurement, just as we did twice in the network
of Fig. 2. A more complicated network works with two qubits representing the binary numbers from0 to
3. Such a network is shown in Fig.7.


|||u2∗a1+a0〉〉〉

a0

a1

1 2 3 4

FIG. 7: The measured quantum Fourier transform [20] on two qubits representing the numbers0, 1, 2, 3.
If the input is one of the Fourier states|||ua〉〉〉, where the binary digits ofa are determined bya = 2∗a1 +a0,
then the measurement outcomes area0 anda1, as shown. The numbers under the network are checkpoints
used for analyzing the network.

To see how the network extracts the bits in the index of|||ua〉〉〉, we can follow the states as the network is
executed. The input state at checkpoint1 in Fig. 7 is given by

|||φ1〉〉〉 = |||ua〉〉〉 =
1

2


i0∗a|||0〉〉〉
+i1∗a|||1〉〉〉

+i2∗a|||2〉〉〉
+i3∗a|||3〉〉〉

 =
1

2


i(0∗2

1+0∗20)(a1∗21+a0∗20)|||00〉〉〉
+i(0∗2

1+1∗20)(a1∗21+a0∗20)|||01〉〉〉
+i(1∗2

1+0∗20)(a1∗21+a0∗20)|||10〉〉〉
+i(1∗2

1+1∗20)(a1∗21+a0∗20)|||11〉〉〉

 . (57)

In the last sum, the relevant numbers have been fully expanded in terms of their binary digits to give a
flavor of the general principles underlying the measured Fourier transform. The next step of the network
applies a Hadamard gate to the qubit carrying the most significant digit. To understand how it succeeds
in extractinga0, the least significant bit ofa, let b with binary digitsb0 andb1 represent one of the logical
states of the two qubits. As before, the most significant bitb1 is represented by the top/first qubit that the
first Hadamard gate is applied to. The phase of|||b〉〉〉 in Eq. 57 is given byi(b1∗2

1+b0∗20)(a1∗21+a0∗20). Next,
we determine how this phase depends onb1:

i(b1∗2
1+b0∗20)(a1∗21+a0∗20) = ib1∗2

1∗(a1∗21+a0∗20) ib0∗2
0∗(a1∗21+a0∗20)

= ib1∗a1∗22

ib1∗a0∗21

ib0∗2
0∗(a1∗21+a0∗20)
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= (i4)b1∗a1(i2)b1∗a0 ib0∗2
0∗(a1∗21+a0∗20)

= (−1)b1∗a0 ib0∗2
0∗(a1∗21+a0∗20). (58)

It follows that if a0 = 0, the phase does not depend onb1, and ifa0 = 1, it changes sign withb1. This sign
change can be detected by performing the Hadamard transform and measuring, as can be seen explicitly
by computing the state after the Hadamard transform at checkpoint2:

|||φ2〉〉〉 =
1√
2

(
i0∗2

0∗(a1∗21+a0∗20)|||a0〉〉〉|||0〉〉〉+ i1∗2
0∗(a1∗21+a0∗20)|||a0〉〉〉|||1〉〉〉

)
= |||a0〉〉〉

1√
2

(
i0∗2

0∗(a1∗21+a0∗20)|||0〉〉〉+ i1∗2
0∗(a1∗21+a0∗20)|||1〉〉〉

)
. (59)

The phases still show a dependence ona0 via the termsib0∗2
0∗a0∗20

= ib0a0. The purpose of the phase shift
gate conditioned on the measurement outcome is to remove that dependence. The result is the following
state on the remaining qubit at checkpoint3:

|||φ3〉〉〉 =
1√
2

(
i0∗2

0∗a1∗21|||0〉〉〉+ i1∗2
0∗a1∗21|||1〉〉〉

)
=

1√
2

(
(−1)0∗a1|||0〉〉〉+ (−1)1∗a1 |||1〉〉〉

)
=

1√
2

(
|||0〉〉〉+ (−1)a1|||1〉〉〉

)
. (60)

The final Hadamard transform followed by a measurement therefore results in the bita1, as desired.
The elements that we used to determine the order of8 modulo15 can be combined and generalized to

determine the order of anyq moduloN with gcd(q,N) = 1. The general network is shown in Fig.9. Two
features of the generalization are not apparent from the example. First, in order for the quantum network
to be efficient, an efficient implementation of the controlledf̂ 2l

operation is required. To obtain such an
implementation, first note that to calculatef 2l

(x) = q2l
x mod N it suffices to squareq repeatedly modulo

N using
(
q2m)2

mod N = q2m+1
mod N until we obtainq2l

mod N . The result is then multiplied by
x mod N . This computation is efficient. For any givenq, it can be converted to an efficient network
consisting of Toffoli and controlled-not gates acting on the binary representation ofx. The conversion can
be accomplished with standard techniques from the theory of reversible classical computation. The result
is an efficient network for̂f 2l

. Basic network theory can then be used to implement the controlled version
of this operation [21].

The understand the second feature, note that we were lucky that the order of8 modulo15 was a power
of 2, which nicely matched the measured Fourier transform we constructed on two qubits. The measured
Fourier transform onm ancilla qubits can detect exactly only eigenvalues that are powers of the2m’th
root of unityeiπ/2m−1

. The phase kicked back by the controlled operations corresponds to ak’th root of
unity. Given a Fourier state on the cycle ofq mod N , the resulting state on the ancilla qubits has phases
that go as powers of ak’th root of unity. Fortunately, the ancilla’s Fourier basis is such that the measured
Fourier transform picks up primarily those basis states whose generating phase is close to the kick back
phase. Thus we are likely to detect a nearbyω = ei lπ/2m−1

. It is still necessary to infer (a divisor of)k
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from knowledge of such anω. Since we know that the orderk is bounded byN , the number of possible
phases kicked back that are near the measuredω is limited. To ensure that there is only one possible such
phase, it is necessary to choosem such that2m > N2. See also the caption of Fig.9.
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3 Advantages of Quantum Information

The notion of quantum information as explained in this primer was established in the 1990s. It emerged
from research focused on understanding how physics affects our capabilities to communicate and to pro-
cess information. The recognition that usable types of information need to be physically realizable was
repeatedly emphasized by R. Landauer who proclaimed that “information is physical” [22]. Beginning
in the 1960s, R. Landauer studied the thermodynamic cost of irreversible operations in computation [23].
C. Bennett showed that by using reversible computation, this cost can be avoided [24]. Limitations of mea-
surement in quantum mechanics were investigated early by researchers such as J. von Neumann [25, 26],
and later by A. Holevo [27] and C. Helstrom [28]. A. Holevo introduced the idea of quantum communica-
tion channels and found bounds on their capacity for transmitting classical information [29]. Initially, most
work focused on determining the physical limitations placed on classical information processing. The fact
that pairs of two-level systems can have correlations not possible for classical systems was proven by
J. Bell [30] in 1964. Subsequently, indications that quantum mechanics offers advantages to information
processing came from S. Wiesner’s studies of cryptographic applications [1] in the late 1960s. S. Wiesner’s
work was not recognized until the 1980s, when C. Bennett, G. Brassard, S. Breidbart and S. Wiesner [2]
introduced the idea of quantum cryptography, which can be used to communicate in secret.

Initially, the term “quantum computation” was mostly used to refer to classical computers realized
using quantum mechanical systems. In the 1980s, P. Benioff [31], R. Feynman [3] and Y. I. Manin [32]
introduced the idea of a quantum computer based on quantum information. They noted that the apparent
exponential complexity of simulating quantum mechanics on a classical computer might be overcome if
we could use a computer that is itself based on quantum mechanics. A formal model of quantum Tur-
ing machines was soon defined by D. Deutsch [33], who later also introduced quantum networks [34].
D. Deutsch and R. Jozsa [35] were the first to introduce a black box problem that can be solved determin-
istically on a quantum computer in fewer steps than on a classical computer.

In spite of suggestions that it could lead to large efficiency improvements in simulating physics, quan-
tum information processing was still largely an academic subject. Based on work by E. Bernstein and
U. Vazirani [13] that formalized quantum complexity theory, D. Simon [14] showed that, for black-box
problems, quantum computers can be exponentially more efficient than classical deterministic or proba-
bilistic computers, giving the first indication of a strong advantage for quantum information processing. It
was Shor’s algorithm for factoring large whole numbers [4, 5] that finally convinced a larger community
that quantum information was more than just a tool for realizing classical computers. This change in at-
titudes was in no small part due to the fact that the security of commonly used cryptographic protocols is
based on the hardness of factoring.

At that point, it was still generally believed that the fragility of quantum states made it unlikely for
reasonably large quantum computers to be realized in practice. But the discovery by Shor [36] and
A. Steane [37] that quantum error-correction was possible soon changed that view, see [12] for an in-
troductory overview.

As a result of the recognition of the utility and realizability of quantum information, the science of
quantum information processing is a rapidly growing field. As quantum information becomes increasingly
accessible by technology, its usefulness will be more apparent. The next few sections briefly discuss what
we currently know about applications of quantum information processing. A useful reference text on
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quantum computation and information with historical notes is the book by M. Nielsen and I. Chuang [38].

3.1 Quantum Algorithms

Shor’s factoring algorithm, which precipitated much of the current work in quantum information pro-
cessing, is based on a quantum realization of the fast Fourier transform. The most powerful version of
this technique is now represented by the phase-estimation algorithm of A. Kitaev [17] as formalized by
R. Cleveet al.[16]. See Sect.2.10for an explanation of the factoring algorithm and phase estimation. The
best known application of quantum factoring is to cryptanalysis, where it can be used to efficiently break
the currently used public-key cryptographic codes. Whether there are any constructive applications of
quantum factoring and its generalizations remains to be determined. For users of public key cryptography,
a crucial question is: “How long can public key codes based on factoring continue to be used safely?”
To attempt to answer this question, one can note that to break a code with a typical key size of1000 bits
requires more than3000 qubits and108 quantum gates, which is well out of reach of current technology.
However, it is conceivable that a recording of encrypted information transmitted in 2000 can be broken in
the next “few” decades.

Shor’s quantum factoring algorithm was not the first with a significant advantage over classical algo-
rithms. The first quantum algorithms to be proposed with this property were algorithms for simulating
quantum mechanical systems. These algorithms simulate the evolution of a reasonably large number of
interacting quantum particles, for example, the electrons and nuclei in a molecule. The algorithms’ outputs
are what would be measurable physical quantities of the system being simulated. The known methods for
obtaining these quantities on classical computers scale exponentially with the number of particles, except
in special cases.

The idea of using quantum computers for simulating quantum physics spurred the work that eventually
lead to the quantum factoring algorithm. However, that idea did not have the broad scientific impact
that the quantum factoring algorithm had. One reason is that because of its cryptographic applications,
factoring is a heavily studied problem in theoretical computer science and cryptography. Because so
many people have tried to design efficient algorithms for factoring and failed, the general belief that
factoring is hard for classical computers has a lot of credibility. In contrast, the problem of quantum
physics simulation has no simple formulation as an algorithmic problem suitable for study in theoretical
computer science. Furthermore, many researchers still believe that the physically relevant questions can be
answered with efficient classical algorithms, requiring only more cleverness on the part of the algorithms
designers. Another reason for the lack of impact is that many of the fundamental physical quantities
of interest are not known to be efficiently accessible even on quantum computers. For example, one of
the first questions about a physical system with a given Hamiltonian (energy observable), is: What is
the ground state energy? It is known that the ability to efficiently answer this question for physically
reasonable Hamiltonians leads to efficient algorithms for hard problems such as the traveling salesman or
the scheduling problems. In spite of occasional claims to the contrary, an efficient quantum solution to
these problems is widely considered unlikely.

Most quantum algorithms for physics simulations are based on a direct emulation of the evolution of
a quantum mechanical system. The focus of the original proposals by Feynman and others was on how
to implement the emulation using a suitable formulation of general-purpose quantum computers. After
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such computers were formalized by Deutsch, the implementation of the emulation was generalized and
refined by S. Lloyd [39], Wiesner [40] and C. Zalka [41]. The ability to emulate the evolution of quan-
tum systems is actually widely used by classical “Monte-Carlo” algorithms for simulating physics, where
the states amplitudes are, in effect, represented by expectations of random variables that are computed
during the simulation. As in the case of the quantum algorithms for physics emulation, the Monte-Carlo
algorithms efficiently evolve the representation of the quantum system. The inefficiency of the classical
algorithm arises only in determining a physical quantity of interest. In the case of Monte-Carlo algorithms,
the “measurement” of a physical quantity suffers from the so-called “sign problem”, often resulting in ex-
ponentially large, random errors that can be reduced only by repeating the computation extremely many
times. In contrast, the quantum algorithms for emulation can determine many (but not all) of the in-
teresting physical quantities with polynomially bounded statistical errors. How to efficiently implement
measurements of these quantities has been the topic of more recent work in this area, much of which is
based on variants of the phase estimation algorithm [42, 43, 44, 45, 46].

Although several researchers have suggested that there are interesting quantum physics simulations
that can be implemented with well below 100 qubits, one of the interesting problems in this area of
research is to come up with a specific simulation algorithm that uses small numbers of qubits and quantum
gates, and that computes an interesting physical quantity not easily obtainable using available classical
computers.

Another notable algorithm for quantum computers, unstructured quantum search, was described by
L. Grover [6]. Given is a black box that computes a binary functionf on inputsx with 0 ≤ x < N .
The functionf has the property that there is a unique inputa for which f(a) = 1. The standard quantum
version of this black box implements the transformationf̂ |||x〉〉〉|||b〉〉〉 = |||x〉〉〉|||b⊕ f(x)〉〉〉, whereb is a bit and
b ⊕ f(x) is computed modulo2. Unstructured quantum search findsa quadratically faster, that is, in
time of orderN1/2, than the best classical black-box search, which requires time of orderN . The context
for this algorithm is the famousP 6= NP conjecture, which is captured by the following algorithmic
problem: Given is a classical circuitC that computes an output. Is there an input to the circuit for which
the circuit’s output is1? Such an input is called a “satisfying” input or “assignment”. For any given input,
it is easy to check the output, but an efficient algorithm that finds a satisfying input is conjectured to be
impossible. This is theP 6= NP conjecture. Generalizations of Grover’s search algorithm (“amplitude
amplification” [47]) can be used to find satisfying inputs faster than the naive classical search, which
tries each possible input in some, possibly random, order. It is worth noting, howoever, that if sufficient
classical parallelism is available, quantum search loses many of its advantages.

The three algorithms just described capture essentially all the known algorithmic advantages of quan-
tum computers. Almost all algorithms that have been described are applications of phase estimation or of
amplitude amplification. These algorithms well justify developing special purpose quantum information
processing technology. Will general purpose quantum computers be useful? More specifically, what other
algorithmic advantages do quantum computers have?

3.2 Quantum Communication

Quantum communication is an area in which quantum information has proven (rather than conjectured)
advantages. The best known application is quantum cryptography, whereby two parties, Alice and Bob,
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can generate a secret key using a quantum communication channel (for example, photons transmitted
in optical fiber) and an authenticated classical channel (for example, a telephone line). Any attempt at
learning the key by eavesdropping is detected. A quantum protocol for generating a secret key is called
a “quantum key exchange” protocol. There are no equally secure means for generating a secret key by
using only classical deterministic channels. Few quantum operations are needed to implement quantum
key exchange, and as a result there are working prototype systems [48, 49, 50]. To overcome the distance
limitations (tens of kilometers) of current technology requires the use of quantum error-correction and
hence more demanding quantum technology.

Quantum key exchange is one of an increasing number of multi-party problems that can be solved more
efficiently with quantum information. The area of research concerned with how several parties at different
locations can solve problems while minimizing communication resources is called “communication com-
plexity”. For quantum communication complexity (R. Cleve and H. Burhman [51]), the communication
resources include either shared entangled qubits or a means for transmitting quantum bits. A seminal paper
by Burhman, Cleve and W. Van Dam [52] shows how the non-classical correlations present in maximally
entangled states lead to protocols based on such states that are more efficient than any classical determin-
istic or probabilistic protocol achieving the same goal. R. Raz [53] showed that there is an exponential
improvement in communication resources for a problem in which Alice and Bob have to answer a question
about the relationship between a vector known to Alice and a matrix known to Bob. Although this problem
is artificial, it suggests that there are potentially useful advantages to be gained from quantum information
in this setting.

3.3 Quantum Control

According to G. Moore’s law of semiconductor technology, the size of transistors is decreasing exponen-
tially, by a factor of about.8 every year. If this trend continues, then over the next few decades devices
will inevitably be built whose behavior will be primarily quantum mechanical. For the purpose of classical
computation, the goal is to remove the quantum behavior and stabilize classical information. But quantum
information offers an alternative: It is possible to directly use the quantum effects to advantage. Whether
or not this advantage is useful (and we believe it is), the ideas of quantum information can be used to
systematically understand and control quantum mechanical systems.

The decreasing size of semiconductor components is a strong motivation to strive for better under-
standing the behavior of condensed matter quantum mechanical systems. But there is no reason to wait for
Moore’s law: There are a rapidly increasing number of experimental systems in which quantum mechan-
ical effects are being used and investigated. Examples include many optical devices (lasers, microwave
cavities, entangled photon pairs), nuclear magnetic resonance with molecules or in solid state, trapped ion
or atom systems, Rydberg atoms, superconducting devices (Josephson junctions, SQUIDs) and spintronics
(electron spins in semiconductor devices). Many of these systems are being considered as candidates for
realizing quantum information processing. Yet, regardless of the future of quantum information process-
ing, there is ample motivation for studying these systems.
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3.4 Outlook

The science of quantum information processing is promising to have a significant impact on how we
process information, solve algorithmic problems, engineer nano-scale devices and model fundamental
physics. It is already changing the way we understand and control matter at the atomic scale, making
the quantum world more familiar, accessible and understandable. Whether or not we do most of our
everyday computations by using the classical model, it is likely that the physical devices that support these
computations will exploit quantum mechanics and integrate the ideas and tools that have been developed
for quantum information processing.
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4 Glossary

Algorithm. A set of instructions to be executed by a computing device. What instructions are available
depends on the computing device. Typically, instructions include commands for manipulating the
contents of memory and means for repeating blocks of instructions indefinitely or until a desired
condition is met.

Amplitude. A quantum system with a chosen orthonormal basis of “logical” states|||i〉〉〉 can be in any
superposition

∑
i αi|||i〉〉〉 of these states, where

∑
i |αi|2 = 1. In such a superposition, the complex

numbersαi are called the amplitudes. Note that the amplitudes depend on the chosen basis.
Ancillas. Helper systems used to assist in a computation involving other information systems.
Bell basis. For two qubitsA andB, the Bell basis consists of the four states1√

2

(
|||00〉〉〉

AB
± |||11〉〉〉

AB

)
and

1√
2

(
|||01〉〉〉

AB
± |||10〉〉〉

AB

)
.

Bell states. The members of the Bell basis.
Bit. The basic unit of deterministic information. It is a system that can be in one of two possible states,0

and1.
Bit sequence.A way of combining bits into a larger system whose constituent bits are in a specific order.
Bit string. A sequence of0’s and1’s that represents a state of a bit sequence. Bit strings are the words of

a binary alphabet.
Black box. A computational operation whose implementation is unknown. Typically, a black box imple-

ments one of a restricted set of operations, and the goal is to determine which of these operations
it implements by using it with different inputs. Each use of the black box is called a “query”. The
smallest number of queries required to determine the operation is called the “query complexity” of
the restricted set. Determining the query complexity of sets of operations is an important problem
area of computational complexity.

Bloch sphere. The set of pure states of a qubit represented as points on the surface of the unit sphere in
three dimensions.

Bra. A state expression of the form〈〈〈ψ|||, which is considered to be the conjugate transpose of the ket
expression|||ψ〉〉〉.

Bra-ket notation. A way of denoting states and operators of quantum systems with kets (for example,
|||ψ〉〉〉) and bras (for example,〈〈〈φ|||).

Circuit. A combination of gates to be applied to information units in a prescribed order. To draw circuits,
one often uses a convention for connecting and depicting gates. See also “network”.

Circuit complexity. The circuit complexity of an operation on a fixed number of information units is the
smallest number of gates required to implement the operation.

Classical information. The type of information based on bits and bit strings and more generally on words
formed from finite alphabets. This is the information used for communication between people. Clas-
sical information can refer to deterministic or probabilistic information, depending on the context.

Computation. The execution of the instructions provided by an algorithm.
Computational states. See the entry for “logical states”.
Computer. A device that processes information.
Density matrix or operator. A representation of pure and mixed states without redundancy. For a pure

state|||ψ〉〉〉, the corresponding density operator is|||ψ〉〉〉〈〈〈ψ|||. A general density operator is a probabilistic
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combination
∑

i λi|||ψi〉〉〉〈〈〈ψi|||, with
∑

i λi = 1.
Deterministic information. The type of information that is based on bits and bit strings. Deterministic

information is classical, but it explicitly excludes probabilistic information.
Distinguishable states.In quantum mechanics, two states are considered distinguishable if they are or-

thogonal. In this case, a measurement exists that is guaranteed to determine which of the two states
a system is in.

Efficient computation. A computation is efficient if it requires at most polynomially many resources as
a function of input size. For example, if the computation returns the valuef(x) on inputx, where
x is a bit string, then it is efficient if there exists a powerk such that the number of computational
steps used to obtainf(x) is bounded by|x|k, where|x| is the length (number of bits) ofx.

Entanglement. A non-classical correlation between two quantum systems most strongly exhibited by the
maximally entangled states such as the Bell states for two qubits, and considered to be absent in
mixtures of product states (which are called “separable” states). Often states that are not separable
are considered to be entangled. However, nearly separable states do not exhibit all the features of
maximally entangled states. As a result, studies of different types of entanglement are an important
component of quantum information theory.

Gate. An operation applied to information for the purpose of information processing.
Global phase. Two quantum states are indistinguishable if they differ only by a global phase. That is,

|||ψ〉〉〉 andeiφ|||ψ〉〉〉 are in essence the same state. The global phase difference is the factoreiφ. The
equivalence of the two states is apparent from the fact that their density matrices are the same.

Hilbert space. An n-dimensional Hilbert space consists of all complexn-dimensional vectors. A defining
operation in a Hilbert space is the inner product. If the vectors are thought of as column vectors,
then the inner product〈x, y〉 of x andy is obtained by forming the conjugate transposex† of x and
calculating〈x, y〉 = x†y. The inner product induces the usual squared norm|x|2 = 〈x, x〉.

Information. Something that can be recorded, communicated, and computed with. Information is fun-
gible; that is, its meaning can be identified regardless of the particulars of the physical realization.
Thus, information in one realization (such as ink on a sheet of paper) can be easily transferred to
another (for example, spoken words). Types of information include deterministic, probabilistic and
quantum information. Each type is characterized by “information units”, which are abstract systems
whose states represent the simplest information of each type. The information units define the “nat-
ural” representation of the information. For deterministic information the information unit is the
bit, whose states are symbolized by0 and1. Information units can be put together to form larger
systems and can be processed with basic operations acting on a small number of them at a time.

Inner product. The defining operation of a Hilbert space. In a finite dimensional Hilbert space with a
chosen orthonormal basis{ei : 1 ≤ i ≤ n}, the inner product of two vectorsx =

∑
i xiei and

y =
∑

i yiei is given by
∑

i xiyi. In the standard column representation of the two vectors, this
is the number obtained by computing the product of the conjugate transpose ofx with y. For real
vectors, this agrees with the usual “dot” product. The inner product ofx andy is often written in the
form 〈x, y〉. Pure quantum states are unit vectors in a Hilbert space. If|||φ〉〉〉 and|||ψ〉〉〉 are two quantum
states expressed in the ket-bra notation, there inner product is given by(|||φ〉〉〉)† |||ψ〉〉〉 = 〈〈〈φ|||ψ〉〉〉.

Ket. A state expression of the form|||ψ〉〉〉 representing a quantum state. Usually|||ψ〉〉〉 is thought of as a
superposition of members of a logical state basis|||i〉〉〉. One way to think about the notation is to
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consider the two symbols “|||” and “〉〉〉” as delimiters denoting a quantum system andψ as a symbol
representing a state in a standard Hilbert space. The combination|||ψ〉〉〉 is the state of the quantum
system associated withψ in the standard Hilbert space via a fixed isomorphism. In other words, one
can think ofψ ↔ |||ψ〉〉〉 as an identification of the quantum system’s state space with the standard
Hilbert space.

Linear extension of an operator. The unique linear operator that implements a map defined on a basis.
Typically, we define an operatorU on a quantum system only on the logical statesU : |||i〉〉〉 7→ |||ψi〉〉〉.
The linear extension is defined byU(

∑
i αi|||i〉〉〉) =

∑
i αi|||ψi〉〉〉.

Logical states. For quantum systems used in information processing, the logical states are a fixed or-
thonormal basis of pure states. By convention, the logical basis for qubits consists of|||0〉〉〉 and|||1〉〉〉.
For larger dimensional quantum systems, the logical basis is often indexed by the whole numbers,
|||0〉〉〉, |||1〉〉〉, |||2〉〉〉, . . .. The logical basis is often also called the “computational” basis, or sometimes, the
“classical” basis.

Measurement. The process used to extract classical information from a quantum system. A general
projective measurement is defined by a set of projectorsPi satisfying

∑
i Pi = 1l andPiPj = δijPi.

Given the quantum state|||ψ〉〉〉, the outcome of a measurement with the set{Pi}i is one of the classical
indecesi associated with a projectorPi. The indexi is the measurement outcome. The probability
of outcomei is pi = |Pi|||ψi〉〉〉|2, and given outcomei, the quantum state “collapses” toPi|||ψi〉〉〉/

√
pi.

Mixture. A probabilistic combination of pure states of a quantum system. Mixtures can be represented
without redundancy with density operators. Thus a mixture is of the form

∑
i λi|||ψi〉〉〉〈〈〈ψi|||, with

λi ≥ 0,
∑

i λi = 1 being the probabilities of the states|||ψi〉〉〉. This expression for mixtures defines the
set of density operators, which can also be characterized as the set of operatorsρ satisfying tr(ρ) = 1
and for all|||ψ〉〉〉, 〈〈〈ψ|||ρ|||ψ〉〉〉 ≥ 0 (“positive semidefinite operator”).

Network. In the context of information processing, a network is a sequence of gates applied to specified
information units. We visualize networks by drawing horizontal lines to denote the time line of an
information unit. The gates are represented by graphical elements that intercept the lines at specific
points. A realization of the network requires applying the gates to the information units in the
specified order (left to right).

Operator. A function that transforms the states of a system. Operators may be restricted depending on
the system’s properties. For example, in talking about operators acting on quantum systems, one
always assumes that they are linear.

Oracle. An information processing operation that can be applied. A use of the oracle is called a “query”.
In the oracle model of computation, a standard model is extended to include the ability to query
an oracle. Each oracle query is assumed to take one time unit. Queries can reduce the resources
required for solving problems. Usually, the oracle implements a function or solves a problem not
efficiently implementable by the model without the oracle. Oracle models are used to compare the
power of two models of computation when the oracle can be defined for both models. For example,
in 1994, D. Simon showed that quantum computers with a specific oracleO could efficiently solve
a problem that had no efficient solution on classical computers with access to the classical version
of O. At the time, this result was considered to be the strongest evidence for an exponential gap in
power between classical and quantum computers.

Overlap. The inner product between two quantum states.
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Pauli operators. The Hermitian matricesσx, σy, σz acting on qubits, which are two-level quantum sys-
tems. They are defined in Eq.12. It is often convenient to consider the identity operator to be
included in the set of Pauli operators.

Polynomial resources.To say that an algorithm computing the functionf(x), wherex is a bit string,
uses polynomial resources (in orther words, “is efficient”) means that the number of steps required
to computef(x) is bounded by|x|k for some fixedk. Here|x| denotes the length of the bit stringx.

Probabilistic bit. The basic unit of probabilistic information. It is a system whose state space consists of
all probability distributions over the two states of a bit. The states can be thought of as describing
the outcome of a biased coin flip before the coin is flipped.

Probabilistic information. The type of information obtained by extending the state spaces of determin-
istic information to include arbitrary probability distributions over the deterministic states. This is
the main type of classical information to which quantum information is compared.

Probability amplitude. The squared norm of an amplitude with respect to a chosen orthonormal basis
{|||i〉〉〉}. Thus, the probability amplitude is the probability with which the state|||i〉〉〉 is measured in a
complete measurement that uses this basis.

Product state. For two quantum systemsA andB, product states are of the form|||ψ〉〉〉
A
|||φ〉〉〉

B
. Most states are

not of this form.
Program. An algorithm expressed in a language that can be understood by a particular type of computer.
Projection operator. A linear operatorP on a Hilbert space that satisfiesP 2 = P †P = P . The projection

onto a subspaceV with orthogonal complementW is defined as follows: Ifx ∈ V andy ∈ W , then
P (x+ y) = x.

Pseudo-code.An semi-formal computer language that is intended to be executed by a standard “ran-
dom access machine”, which is a machine model with a central processing unit and access to a
numerically indexed unbounded memory. This machine model is representative of the typical one-
processor computer. Pseudo-code is similar to programming languages such as BASIC, Pascal, or
C, but does not have specialized instructions for human interfaces, file management, or other “ex-
ternal” devices. Its main use is to describe algorithms and enable machine-independent analysis of
the algorithms’ resource usage.

Pure state. A state of a quantum system that corresponds to a unit vector in the Hilbert space used to
represent the system’s state space. In the ket notation, pure states are written in the form|||ψ〉〉〉 =∑

i αi|||i〉〉〉, where the|||i〉〉〉 form a logical basis and
∑

i |αi|2 = 1.
Quantum information. The type of information obtained when the state space of deterministic informa-

tion is extended by normalized superpositions of deterministic states. Formally, each deterministic
state is identified with one of an orthonormal basis vector in a Hilbert space and normalized su-
perpositions are unit-length vectors that are expressible as complex linear sums of the chosen basis
vectors. It is convenient to extend this state space further by permitting probability distributions over
the quantum states (see the entry for “mixtures”). This extension is still called quantum information.

Qubit. The basic unit of quantum information. It is the quantum extension of the deterministic bit, which
implies that its state space consists of the unit-length vectors in a two dimensional Hilbert space.

Read-out. A method for obtaining human-readable information from the state of a computer. For quan-
tum computers, read-out refers to a measurement process used to obtain classical information about
a quantum system.
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Reversible gate.A gate whose action can be undone by a sequence of gates.
Separable state.A mixture of product states.
States. The set of states for a system characterizes the system’s behavior and possible configurations.
Subspace.For a Hilbert space, a subspace is a linearly closed subset of the vector space. The term can be

used more generally for a systemQ of any information type: A subspace ofQ or, more specifically,
of the state space ofQ is a subset of the state space that preserves the properties of the information
type represented byQ.

Superposition principle. One of the defining postulates of quantum mechanics according to which if
states|||1〉〉〉, |||2〉〉〉, . . . are distinguishable then

∑
i αi|||i〉〉〉 with

∑
i |αi|2 = 1 is a valid quantum state.

Such a linear combination is called a normalized superposition of the states|||i〉〉〉.
System. An entity that can be in any of a specified number of states. An example is a desktop computer

whose states are determined by the contents of its various memories and disks. Another example
is a qubit, which can be thought of as a particle whose state space is identified with complex, two-
dimensional, length-one vectors. Here, a system is always associated with a type of information that
determines the properties of the state space. For example, for quantum information the state space
is a Hilbert space. For deterministic information, it is a finite set called an alphabet.

Unitary operator. A linear operatorU on a Hilbert space that preserves the inner product. That is,
〈Ux, Uy〉 = 〈x, y〉. If U is given in matrix form, then this expression is equivalent toU †U = 1l.

Universal set of gates.A set of gates that satisfies the requirement that every allowed operation on infor-
mation units can be implemented by a network of these gates. For quantum information, it means a
set of gates that can be used to implement every unitary operator. More generally, a set of gates is
considered universal if for every operatorU , there are implementable operatorsV arbitrarily close
toU .
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